Research Article

Open Access

On α -Fuzzy Soft Irreducible Spaces

Majd Hamid Mahmood

Department of Mathematics, Collage of Education, Mustansiriyah University, Baghdad, IRAQ.

Contact: mgmg227@yahoo.com

Article Info	ABSTRACT
Received 26/08/2022	We define fuzzy soft irreducible sets, α -fuzzy soft irreducible sets in fuzzy soft topological spaces and study the properties including (fuzzy soft continuity; fuzzy soft homeomorphism and fuzzy soft topological properties) on α -fuzzy soft irreducible sets.
Accepted 04/12/2022	KEYWORDS : Fuzzy soft irreducible sets; fuzzy soft connected space; fuzzy soft continuous map.
• • •	الخلاصة
Published 30/03/2023	سوف نعرف المجاميع الضبابية الميسرة الغير قابلة للاختزال، المجاميع الضبابية الغير قابلة للاختزال- α في الفضاءات الضبابية الميسرة وسوف ندرس الخواص التي تتضمن (الاستمرارية الضبابية الميسرة، التكافؤ الضبابي الميسر والصفات التبولوجية الضبابية الميسرة) على المجاميع الضبابية الغير قابلة للاختزال- α.

INTRODUCTION

The fuzzy sets introduced in 1965 by Zadeh L. A. [12], Soft set introduced in 2001 by Molodtsov D. [8]. Fuzzy soft set introduced and studied in [1], [4], [7], [9] (simply \mathcal{F} - set). α fuzzy soft sets defined in [5] (simply $\alpha \mathcal{F}$ - set). Soft topological space defined in [10]. Fuzzy soft topological space introduced and studied in [2],[6],[11].

In this research, we define fuzzy soft irreducible sets. α -fuzzy soft irreducible sets in fuzzy soft topological spaces and study the properties including: fuzzy soft continuity, fuzzy soft homeomorphism and fuzzy soft topological properties on α -fuzzy soft irreducible sets.

Definition 1.1. [7] For a universal set Ω ; \wp set of parameters and soft set(f, \wp). If each soft element \varkappa in (f, \wp) is associated with $\eta \in [0,1]$, then the resulting set is called a fuzzy soft set (\mathfrak{F} - set).

Definitions 1.2. [7]

For a soft set (F,E), F: $E \rightarrow P(\Omega)$ where $F(e_i) \in P(\Omega)$, $\forall e_i \in E$ the set of parameters, and for a family of \mathcal{F} -sets generated by the same soft set (F,E), { $(f, \mathcal{P})_{\lambda} : \lambda \in \Lambda$, where Λ is an infinite index set},

(1) the \mathcal{F} -union is defined by

 $(h, \mathcal{D}) = \widetilde{U}_{\lambda}$ (f, $\mathcal{D})_{\lambda} = \{x: x(e_i, F(e_i)^{\kappa i})\}$, where $\kappa i = \{\max \kappa i_{\lambda} : ki_{\lambda} \text{ are the memberships of each soft element in the soft set and <math>i \in \xi$, ξ is an infinite index set},

(2) the \mathcal{F} -intersection is defined by:

 $\begin{array}{ll} (h, \wp) &= \widetilde{\bigcap}_{\lambda} \ (f, \wp)_{\lambda} = \{ \, x : \, x = (e_i, F(e_i)^{\kappa i}) \} &, \\ \text{where } \kappa i = \{ \ \min \kappa i_{\lambda} : \, k i_{\lambda} \text{are the memberships of } \\ \text{each soft element in the soft set and } i \in \xi , \xi \text{ is an infinite index set} \}, \end{array}$

(3) \tilde{A} is \mathcal{F} - subset of $\tilde{B}, \tilde{A} \subseteq \tilde{B}$ if each \mathcal{F} - element in \tilde{A} is in \tilde{B} .

(4) $\widetilde{\Phi}$ is the null \mathfrak{F} - *set* where each soft element associated to $\eta=0$, $\widetilde{\Omega}$ is the universal \mathfrak{F} - *set* where each soft element associated to $\eta=1$.

Example 1.3.

For $\Omega = \{a, b\}, \ \wp = \{e\}.$ Let $\tilde{G} = (e, \{a^{0.2}, b^{0.3}\}),$ $\tilde{L} = (e, \{a^{0.4}, b^{0.5}\}),$ $\tilde{\Phi} = (e, \{a^{0}, b^{0}\})$ and $\tilde{\Omega} = (e, \{a^{1}, b^{1}\})$ be \mathcal{F} - sets, $\tilde{G} \cup \tilde{L} = (e, \{a^{0.2}, b^{0.3}\}) \widetilde{U}(e, \{a^{0.4}, b^{0.5}\})$ $= (e, \{a^{0.4}, b^{0.5}\}) = \tilde{L}$ $\tilde{G} \cap \tilde{L} = (e, \{a^{0.2}, b^{0.3}\}) \widetilde{\Omega}(e, \{a^{0.4}, b^{0.5}\})$ $= (e, \{a^{0.2}, b^{0.3}\}) = \tilde{G}$ $\tilde{\Omega} \cap \tilde{L} = \tilde{L}, \tilde{L} \cup \tilde{\Omega} = \tilde{\Omega}$ $\tilde{\Phi} \cap \tilde{G} = \tilde{\Phi}, \tilde{\Phi} \cup \tilde{L} = \tilde{L}$ $\tilde{\Phi} \cap \tilde{\Omega} = \tilde{\Phi}, \tilde{\Phi} \cup \tilde{\Omega} = \tilde{\Omega}.$

65

Definition 1.4.[11] For a non- empty universal set Ω , \wp set of parameters, \mathfrak{F} the collection of \mathfrak{F} - sets generated from the \mathfrak{F} - set $\widetilde{\Omega}$ (the non-null universal \mathfrak{F} -set), if \mathfrak{F} satisfies the following axioms:

(a) $\widetilde{\Phi}$, $\widetilde{\Omega}$ are in \mathfrak{F} .

(b) The intersection of any two \mathcal{F} - set belongs to .

(c) The union of members of - sets is in $\ensuremath{\mathfrak{F}}$.

Then, is called (F - topology).

A triple (Ω, \wp) is called \mathfrak{F} - topological space over Ω (simply \mathfrak{F} -Space), the sets of \mathfrak{F} are \mathfrak{F} - open sets denoted by \mathfrak{F} o - sets and their complements are called \mathfrak{F} c- sets.

Example 1.5.

For $\Omega = \{a, b\}, \& = \{e\}.$ Let $\widetilde{N} = (e, \{a^{0.8}, b^{0.7}\}),$ $\widetilde{D} = (e, \{a^{0.5}, b^{0.4}\}), \widetilde{K} = (e, \{a^{0.6}, b^{0.2}\})$ $\widetilde{\Phi} = (e, \{a^{0}, b^{0}\}), \widetilde{\Omega} = (e, \{a^{1}, b^{1}\})$ Let $\mathfrak{F}_{1} = \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{N}, \widetilde{D}\}, \mathfrak{F}_{2} = \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{N}\}$ $\mathfrak{F}_{3} = \{\widetilde{\Phi}, \widetilde{\Omega}\}.$

Then, $\mathfrak{F}_1, \mathfrak{F}_2, \mathfrak{F}_3$ are \mathfrak{F} - topologies over Ω . But $_4 = \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{D}, \widetilde{K}\}$ is not a \mathfrak{F} - topology on Ω since $\widetilde{D} \cap \widetilde{K} = (e, \{a^{0.5}, b^{0.2}\}) \notin \mathfrak{F}_4$.

Definition 1.6. [11]

Let \tilde{A} be a \mathfrak{F} - set in \mathfrak{F} - topological space (Ω, \wp) . The \mathfrak{F} - interior of \tilde{A} (or \mathfrak{F} - int (\tilde{A})) is defined by \mathfrak{F} - in $(\tilde{A}) = \widetilde{U} \{ \tilde{G} : \tilde{G} \text{ is } \mathfrak{F} \text{ o- set and } \tilde{G} \subseteq \tilde{A} \}$.

Definition 1.7. [11]

Let \widetilde{M} be a \mathfrak{F} - set in \mathfrak{F} - topological space $(\Omega, , \wp)$. The \mathfrak{F} - closure of \widetilde{M} (or \mathfrak{F} - cl(\widetilde{M})) is defined by \mathfrak{F} - cl(\widetilde{M}) = $\widetilde{\cap} \{ \widetilde{C} : \widetilde{C} \text{ is } \mathfrak{F} \text{c - set and } \widetilde{M} \subseteq \widetilde{C} \}$.

Remarks 1.8.

1- \mathfrak{F} - int (\tilde{A})) is the largest \mathfrak{F} - set contained in \tilde{A} . 2- \mathfrak{F} - cl (\tilde{A})) is the smallest \mathfrak{F} - set containing \tilde{A} .

Examples 1.9.

1- For $\Omega = \{s, d\}, \ \wp = \{e\}$. Let $\tilde{C} = (e, \{s^1, d^0\}), \ \tilde{D} = (e, \{s^0, d^1\}), \ \tilde{\Phi} = (e, \{s^0, d^0\}), \ \tilde{\Omega} = (e, \{s^1, d^1\}), \ \mathfrak{F}_1 = \{\tilde{\Phi}, \tilde{\Omega}, \tilde{C}, \tilde{D}\}$ The sets $\tilde{\Phi}, \tilde{\Omega}, \tilde{C}$ and \tilde{D} are $\mathcal{F}o$ - sets and $\mathcal{F}c$ - sets, $\mathfrak{F}_1 - \operatorname{in}(\tilde{C}) = \tilde{C}, \mathfrak{F}_1 - \operatorname{in}(\tilde{D}) = \tilde{D}, \ \mathfrak{F}_1 - \operatorname{cl}(\tilde{C}) = \tilde{C}, \mathfrak{F}_1 - \operatorname{cl}(\tilde{D}) = \tilde{D}.$ 2- For $\Omega = \{s, d\}, \ \wp = \{e\}$. Let $\tilde{B} = (e, \{s^{0.2}, d^{0.3}\}), \ \tilde{E} = (e, \{s^{0.4}, d^1\}), \ \tilde{F} = (e, \{s^{1}, d^1\}), \ \tilde{\Phi} = (e, \{s^0, d^0\}), \ \tilde{\Omega} = (e, \{s^1, d^1\})$ For $\mathfrak{F}_2 = \{\tilde{\Phi}, \tilde{\Omega}, \tilde{E}, \tilde{F}, \tilde{B}\}$ $\begin{aligned} \mathfrak{F}_{2}\text{-in}(\tilde{F}) &= (e, \{s^{0.2}, d^{0.3}\}) \ \widetilde{U} \ (e, \{s^{0.4}, d^{1}\}) \widetilde{U}(e, \{s^{0.5}, d^{1}\}) = (e, \{s^{0.5}, d^{1}\}) = \tilde{F} \\ \mathfrak{F}_{2}\text{-cl}(\tilde{F}) &= (e, \{s^{0.5}, d^{1}\}) \ \widetilde{\cap} \ (e, \{s^{1}, d^{1}\}) = \tilde{F}. \end{aligned}$

aF- IRREDUCIBLE SPACE

In this section we will define and study $\alpha \mathfrak{F}$ - irreducible spaces, with examples.

Definition 2.1.

The \mathfrak{F} - set \widetilde{M} in \mathfrak{F} - topological space (Ω, \mathbb{P}) is called ($\alpha \mathfrak{F}$ o-set) if:

 $\widetilde{M} \cong \mathfrak{F}$ - int $[\mathfrak{F} - \mathrm{cl} (- \mathrm{int} (\widetilde{M}))].$

And is called (α Fc-set) if:

 $\mathfrak{F} - \mathrm{cl} \left[\mathfrak{F} - \mathrm{int} \left(\mathfrak{F} - \mathrm{cl}(\widetilde{M}) \right) \right] \cong \widetilde{M}$.

Remarks 2.2.

1- $\alpha \mathfrak{F}$ - int (\tilde{A})) is the largest \mathfrak{F} - set contained in \tilde{A} .

2- $\alpha \mathfrak{F}$ - cl (\tilde{A})) is the smallest \mathfrak{F} - set containing \tilde{A} .

3- for $\alpha \mathfrak{F}$ -set $\widetilde{M} = \{ \mathbf{x}_{ij} : \mathbf{x}_{ij} = (ei, \{h_i^{kij}\}) \},\$

4-
$$\widetilde{M}^{c} = \{ x_{ij} : x_{ij} = (ei, \{h_i^{1-kij}\}) \}, \forall kij \in [0,1].$$

5- The complement of α Fo-set (α Fc-set) is α Fc-set (α Fo- set).

Remark 2.3.

Every Fo- set (Fc-set) is α Fo-set (α Fc-set) but the converse is not true in general.

The contra positive is true also, i.e., if the set is not α Fo-set (α Fc-set), then it is not Fo-set (Fc-set).

Examples 2.4.

For $\Omega = \{a, b\}, \ \wp = \{e\}$ and $\widetilde{M}, \widetilde{N}, \widetilde{C}, \widetilde{D}$ are \mathfrak{F} sets defined as follows: $\widetilde{M} = (e, \{a^{0.5}, b^{0.6}\}), \widetilde{N} = (e, \{a^{0.3}, b^{0.4}\})$ $\widetilde{C} = (e, \{a^{0.8} b^{0.7}\}), \widetilde{D} = (e, \{a^{0.5} b^{0.4}\})$ $\widetilde{\Phi} = (e, \{a^{0}, b^{0}\}), \widetilde{\Omega} = (e, \{a^{1}, b^{1}\})$ Let $\mathfrak{F} = \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{M}, \widetilde{N}, \widetilde{C}\}$ be \mathfrak{F} - topology on Ω . Since $\widetilde{C} \in \mathfrak{F}$. Then, \widetilde{C} is \mathfrak{F} o - set so it is $\alpha\mathfrak{F}$ o-set, $\alpha\mathfrak{F}$ - int(\widetilde{C}) = \widetilde{C} [$\alpha\mathfrak{F}$ - cl ($\alpha\mathfrak{F}$ -int(\widetilde{C}))] is the smallest $\alpha\mathfrak{F}$ c - set containing \widetilde{C} which is equal to \widetilde{C} . Then, $\alpha\mathfrak{F}$ - int [$\alpha\mathfrak{F}$ - cl ($\alpha\mathfrak{F}$ - int(\widetilde{C}))] which is the largest $\alpha\mathfrak{F}$ o - set contains \widetilde{C} which is equal to \widetilde{C} . So \widetilde{C} is $\alpha\mathfrak{F}$ o-set, similarly for $\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{M}$ and \widetilde{N} are $\alpha\mathfrak{F}$ oset, \widetilde{D} is (\mathfrak{F} c-set) since it's the complement is \mathfrak{F} o – set \widetilde{M} , and \widetilde{D} is($\alpha\mathfrak{F}$ c-set) since its complement is

set \widetilde{M} , and \widetilde{D} is(α Fc-set) since its complement is α Fo - set \widetilde{M} , \widetilde{D} is not Fo - set since $\widetilde{D} \notin F$ and \widetilde{D} is not α Fo-set since by definition,

$$\alpha \mathfrak{F} - \operatorname{int} (\widetilde{D}) = \widetilde{N}$$

 $\alpha \mathfrak{F} - \mathrm{cl} (\alpha \mathfrak{F} - \mathrm{int} (\widetilde{D})) = \alpha \mathfrak{F} - \mathrm{cl} (\widetilde{N}) = \widetilde{D}$

 $\alpha \mathfrak{F}$ - int $[\alpha \mathfrak{F}$ - cl (- int $(\widetilde{D}))] = \alpha \mathfrak{F}$ - int $[\widetilde{D}] = \widetilde{N}$ and $\widetilde{D} \not\subseteq \alpha \mathfrak{F}$ - int $[\alpha \mathfrak{F}$ - cl $(\alpha \mathfrak{F}$ - int $(\widetilde{D}))] = \widetilde{N}$.

Definition 2.5.

The \mathfrak{F} - topological space (Ω, \mathfrak{P}) is called $\alpha \mathfrak{F}$ irreducible if the intersection of any two non-null $\alpha \mathfrak{F}o$ - sets is a non-null set otherwise it will be said to be $\alpha \mathfrak{F}$ - reducible.

Examples 2.6.

1- For $\Omega = \{a, b\}, \ \wp = \{e\}$ and $\widetilde{M}, \widetilde{N}, \widetilde{C}$ are \mathfrak{F} - sets defined as follows: $\widetilde{M} = (e, \{a^{0.3}, b^{0.5}\}), \widetilde{N} = (e, \{a^{0.2}, b^{0.1}\})$ $\widetilde{C} = (e, \{a^{0.02} b^0\}), \widetilde{\Phi} = (e, \{a^0, b^0\}),$ $\widetilde{\Omega} = (e, \{a^1, b^1\}),$ let $\mathfrak{F} = \{\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{M}, \widetilde{N}, \widetilde{C}\}$ be \mathfrak{F} - topology over Ω . Since $\widetilde{\Phi} \ \widetilde{\Omega}, \widetilde{M}, \widetilde{N}, \widetilde{C}$ are \mathfrak{F} o-sets, then $\widetilde{\Omega}, \widetilde{M}, \widetilde{N}, \widetilde{C}$ are $\alpha \mathfrak{F}$ o-set. Since the intersection of any two non-

are α Fo-set. Since the intersection of any two non-null α Fo - sets is a non-null set.

Then, (Ω, \emptyset) is $\alpha \mathfrak{F}$ - irreducible space.

2- For $\Omega = \{p, m\}, \ \wp = \{e\}$. Let

3- $\widetilde{U} = (e, \{ p^1, m^0 \}), \widetilde{V} = (e, \{ p^0, m^1 \})$ $\widetilde{\Phi} = (e, \{ p^0, m^0 \}), \widetilde{\Omega} = (e, \{ p^1, m^1 \})$

$$\Psi = (e, \{p, \Pi\}), \Omega = (e, \{p, \Pi\})$$

With \mathfrak{T} topology $\mathfrak{T} = (\mathfrak{T}, \mathfrak{T}, \mathfrak{T})$

With \mathfrak{F} - topology $\mathfrak{F} = \{\Phi, \Omega, U, V\}$

Since $\widetilde{\Phi} \ \widetilde{\Omega}, \ \widetilde{U}, \ \widetilde{V}$ are Fo-sets then they are α Fosets. Since $\widetilde{U} \ \widetilde{\cap} \ \widetilde{V} = (e, \{p^1, \dots, p^n\})$

 m^0 }) \cap (e,{ p^0, m^1 })=(e,{ p^0, m^0 })= Φ then the F-topological space be α F - reducible .

Definition 2.7.

In \mathfrak{F} - topological space (Ω, \wp) , the $\alpha \mathfrak{F}$ - set \tilde{A} is $\alpha \mathfrak{F}$ - dense if \tilde{A} intersect with any non-null $\alpha \mathfrak{F}$ o - sets in \mathfrak{F} .

Example 2.8.

1- For $\Omega = \{m, n\}, \ \wp = \{c\}$ set of parameters and $\tilde{Z}, \tilde{D}, \tilde{K}$ are \mathfrak{F} - sets are defined as follows: $\tilde{Z} = (c, \{m^{0.2}, n^{0.7}\}), \tilde{D} = (c, \{m^{0.3}, n^{0.09}\})$ $\tilde{K} = (c, \{a^{0.4} b^1\}), \tilde{\Phi} = (c, \{a^0, b^0\}),$ $\tilde{\Omega} = (c, \{a^1, b^1\})$ Let $\mathfrak{F} = \{\tilde{\Phi}, \tilde{\Omega}, \tilde{Z}, \tilde{D}, \tilde{K}\}$ be a \mathfrak{F} - topology over Ω . Then, $\tilde{\Phi}, \tilde{\Omega}, \tilde{Z}, \tilde{D}$ and \tilde{K} are $\alpha\mathfrak{F}$ o-sets, \tilde{Z} is $\alpha\mathfrak{F}$ - dense set since $\tilde{Z} \cap \tilde{D} \neq \tilde{\Phi},$ $\tilde{Z} \cap \tilde{K} \neq \tilde{\Phi}$ and $\tilde{Z} \cap \tilde{\Omega} \neq \tilde{\Phi}$. Similarly, $\tilde{\Omega}$, is $\alpha\mathfrak{F}$ - dense set. 2- For $\Omega = \{m, n\}, \ \wp = \{e\},$ Let $\tilde{R} = (e, \{m^1, n^0\}), \ \tilde{S} = (e, \{m^0, n^1\})$ $\tilde{\Phi} = (e, \{m^0, n^0\}), \ \tilde{\Omega} = (e, \{m^1, n^1\})$ With \mathfrak{F} - topology $\mathfrak{F} = \{\tilde{\Phi}, \tilde{\Omega}, \tilde{R}, \tilde{S}\}$, the elements of \mathfrak{F} are $\alpha\mathfrak{F}$ o-sets.

Since $\tilde{R} \cap \tilde{S} = \tilde{\Phi}$, So \tilde{R}, \tilde{S} are not $\alpha \mathfrak{F}$ - dense set.

Definition 2.9.

The F-topological space $(\Omega, , \wp)$ is αF - connected if there are no proper, non-null αF o - separated sets \tilde{C} , \tilde{D} in $\tilde{\Omega}$ such that $\tilde{C} \cup \tilde{D} = \tilde{\Omega}$, if (Ω, F, \wp) is not αF - connected, then it is said to be αF disconnected space.

Examples 2.10.

1- For $\Omega = \{m, n, L\}, \ \emptyset = \{e\},\$ let $\tilde{R} = (e, \{m^1, n^0, L^1\}),\$ $\tilde{T} = (e, \{m^0, n^1, L^0\}),\$ $\tilde{\Phi} = (e, \{m^0, n^0, L^0\})$ and $\tilde{\Omega} = (e, \{m^1, n^1, L^1\}).$ With \mathfrak{F} - topology $\mathfrak{F} = \{\tilde{\Phi}, \tilde{\Omega}, \tilde{R}\}$

With \mathfrak{F} - topology $\mathfrak{F} = \{ \widetilde{\Phi}, \widetilde{\Omega}, \widetilde{R}, \widetilde{T} \}$, the elements of \mathfrak{F} are $\alpha \mathfrak{F}$ o-set.

Since $\tilde{R} \cap \tilde{T} = \tilde{\Phi}$ so \tilde{R} , \tilde{T} are non-null α Foseparated sets. Then, the space $(\Omega, \mathcal{F}, \wp)$ is α F disconnected space.

2- For $\Omega = \{m, n\}$, $\wp = \{c\}$ and $\widetilde{M}, \widetilde{N}, \widetilde{C}$ are \mathfrak{F} - sets defined as follows:

 $\widetilde{M} = (c, \{m^0, n^{0.06}\}),$

 $\widetilde{N} = (c, \{m^{0.07}, n^{0.08}\})$

$$\tilde{C} = (c, \{a^{0.09} b^1\}), \tilde{\Phi} = (c, \{a^0, b^0\})$$
 and

 $\widetilde{\Omega} = (c, \{a^1, b^1\}).$

Let $\mathfrak{F} = \{ \widetilde{\Phi}, \widetilde{\Omega}, \widetilde{M}, \widetilde{N}, \widetilde{C} \}$ be a \mathfrak{F} - topology on Ω . Then, $\widetilde{\Phi}, \widetilde{\Omega}, \widetilde{M}, \widetilde{N}$ and \widetilde{C} are $\alpha \mathfrak{F}$ o-sets,

since there are no proper, non-null $\alpha \mathfrak{Fo}$ - separated sets .Then, the \mathfrak{F} - topological space

 (Ω, \mathcal{D}) is $\alpha \mathfrak{F}$ - connected.

In the next theorem we provide the equivalents of $\alpha \mathfrak{F}$ - irreducible space.

Theorem 2.11.

For $(\Omega, \mathfrak{F}, \wp)$ space, the next statements are equivalent :

1. The space $(\Omega, , \wp)$ is $\alpha \mathfrak{F}$ - irreducible.

2. Any $\alpha \mathfrak{F}o$ - set in (Ω, \mathcal{G}) and non-null is $\alpha \mathfrak{F}$ - dense.

3. Any α Fo - set in (Ω ,, \wp) is α F - connected. **Proof.**

(1) \Leftrightarrow (2) Since the $\alpha \mathfrak{F}$ - set \tilde{A} in a \mathfrak{F} - topological space (Ω, \mathfrak{P}) is $\alpha \mathfrak{F}$ - dense if \tilde{A} intersects with any non-null $\alpha \mathfrak{F}$ o - sets so the condition (1) is equivalent to (2).

(1) \Rightarrow (3) Let \tilde{A} be α Fo - set in F and suppose \tilde{A} is α F - disconnected so there exist two non - null α Fo-sets \tilde{M} , \tilde{N} in F such that $\tilde{A} = \tilde{M} \widetilde{\cup} \tilde{N}$; $\tilde{M} \widetilde{\cap} \tilde{N} = \widetilde{\Phi}$, which is contradiction with (1).

 $(3) \Longrightarrow (1)$ If $(\Omega, \mathfrak{F}, \mathfrak{O})$ is $\alpha \mathfrak{F}$ - reducible space, then the intersection of any two non-null $\alpha \mathfrak{F}o$ - sets is a

null set, i.e. If \widetilde{M} , \widetilde{N} are two non-null $\alpha \mathfrak{F} \circ -$ sets, then $\widetilde{M} \cap \widetilde{N} = \widetilde{\Phi}$, so $\widetilde{M} \cup \widetilde{N}$ is $\alpha \mathfrak{F}$ -disconnected set which contradicts (3).

Definition 2.12.

Let (Ω, \wp) be a \mathfrak{F} - topological space and let $\widetilde{A} \subset \widetilde{\Omega}$. If the family $\mathfrak{F}_{A} = \{\widetilde{M}^{*} : \widetilde{M}^{*} = \widetilde{A} \cap \widetilde{M}, \widetilde{M} \in \mathfrak{F}\}$ exists and it is \mathfrak{F} -topology on A. Then, \mathfrak{F}_{A} called the relative \mathfrak{F} -topology on \widetilde{A} induced by the \mathfrak{F} - topology \mathfrak{F} over Ω . Note that $(A, \mathfrak{F}_{A}, \wp)$ is called a \mathfrak{F} - subspace of $(\Omega, \mathfrak{F}, \wp)$.

Example 2.13.

For $\Omega = \{m, n\}, \ \wp = \{c\}$ and $\widetilde{M}, \ \widetilde{N}$ are \mathfrak{F} -sets defined as follows: $\widetilde{M} = (c, \{m^1, n^{0.6}\}), \ \widetilde{N} = (c, \{m^0, n^{0.4}\})$ $\widetilde{\Phi} = (c, \{a^0, b^0\}), \ \widetilde{\Omega} = (c, \{a^1, b^1\})$ Let = { $\widetilde{\Phi}, \ \widetilde{\Omega}, \ \widetilde{M}, \ \widetilde{N}$ } be a \mathfrak{F} - topology over Ω . $\widetilde{A} \subset \widetilde{\Omega}, \ \widetilde{A} = (c, \{m^{0.1}, n^{0.6}\})$ $\widetilde{M}_{A} = (c, \{m^1, n^{0.6}\}) \cap (c, \{m^{0.1}, n^{0.6}\})$ = $(c, \{m^0, n^{0.4}\}) \cap (c, \{m^{0.1}, n^{0.6}\})$ = $(c, \{m^0, n^{0.4}\}) \in \widetilde{N}$. Then, $\mathfrak{F}_{A} = \{\widetilde{\Phi}_A, \ \widetilde{\Omega}_A, \ \widetilde{M}_A, \ \widetilde{N}_A\}$ is relative \mathfrak{F} - topology on \widetilde{A} .

Proposition 2.14.

Let (Ω, \wp) be a \mathfrak{F} - topological space and $\tilde{A} \cong (\Omega, \mathfrak{F}, \wp)$. If $\tilde{G} \ \alpha \mathfrak{F}$ - dense in $(\Omega, \mathfrak{F}, \wp)$, then \tilde{G} is $\alpha \mathfrak{F}$ - dense in \tilde{A} .

Proof.

Let \tilde{G} be $\alpha \mathfrak{F}$ - dense in (Ω, \wp) . To prove \tilde{G} is $\alpha \mathfrak{F}$ dense in \tilde{A} , i.e., to prove $\tilde{G} \cap \tilde{M} \neq \tilde{\Phi}$, $\forall \tilde{M} \subset \tilde{A}$. Let $\tilde{M} \subset \tilde{A}$, \tilde{M} is $\alpha \mathfrak{F}$ o - set in $\mathfrak{F}, \tilde{M} \neq \tilde{\Phi}$, then, $\tilde{M}^* = \tilde{A} \cap \tilde{M} = \tilde{M}$, since given that \tilde{G} is $\alpha \mathfrak{F}$ - dense in $(\Omega, \mathfrak{F}, \wp)$.

Thus, $\tilde{G} \cap \tilde{M} \neq \tilde{\Phi}$; $\forall \tilde{M} \neq \tilde{\Phi}$, for each \tilde{M} in \mathfrak{F} , $\tilde{M}^* = \tilde{M}$.

Implying, $\tilde{G} \cap \tilde{M} \neq \tilde{\Phi}$; $\forall \tilde{M} \neq \tilde{\Phi}$, for each \tilde{M} in \mathfrak{F}_A . So \tilde{G} is $\alpha \mathfrak{F}$ - dense in \tilde{A} .

Theorem 2.15.

If $(\Omega, , \wp)$ is $\alpha \mathfrak{F}$ - irreducible space, then any nonnull $\alpha \mathfrak{F}o$ - set is also $\alpha \mathfrak{F}$ - irreducible.

Proof.

Let (Ω, \wp) be $\alpha \mathfrak{F}$ - irreducible space, \tilde{Y} be non-null $\alpha \mathfrak{F}$ o-set and \tilde{G} be a non-null $\alpha \mathfrak{F}$ o - set in $(Y, \mathfrak{F}_{y}, \wp)$. Since \tilde{Y} is $\alpha \mathfrak{F}$ o - in (Ω_{-}, \wp) so \tilde{G} is $\alpha \mathfrak{F}$ o - in $(\Omega, \mathfrak{F}, \wp)$ by theorem 2.8. and theorem 2.10., then \tilde{G} is $\alpha \mathfrak{F}$ - dense in \tilde{Y} and \tilde{Y} is $\alpha \mathfrak{F}$ - irreducible set.

Definition 2.16.

For $\alpha \mathfrak{F}$ - topological spaces $(\Omega, , \wp)$ and (U, ∂, \wp) , we say a map $J: (\Omega, \mathfrak{F}, \wp) \to (U, \partial, , \wp)$ is $\alpha \mathfrak{F}$ continuous if the inverse image of any $\alpha \mathfrak{F}o$ - set in ∂ is $\alpha \mathfrak{F}o$ - set in.

The next theorem shows that $\alpha \mathfrak{F}$ - continuous image of $\alpha \mathfrak{F}$ -irreducible set in is $\alpha \mathfrak{F}$ - irreducible set.

Theorem 2.17.

For $J: (\Omega, \mathfrak{F}, \wp) \to (\mathbb{U}, \partial, \wp)$ be $\alpha \mathfrak{F}$ - map from a \mathfrak{F} - topological space $(\Omega, \mathfrak{F}, \wp)$ into \mathfrak{F} - topological space $(\mathbb{U}, \partial, \wp)$. Then, the $\alpha \mathfrak{F}$ - continuous image of $\alpha \mathfrak{F}$ - irreducible set in $(\Omega, ..., \wp)$ is $\alpha \mathfrak{F}$ - irreducible set in $(\mathbb{U}, \partial, \wp)$.

Proof.

Let \tilde{A} be $\alpha \mathfrak{F}$ - irreducible set in $(\Omega, \mathfrak{F}, \wp)$, \tilde{G} , \tilde{H} are two non -null $\alpha \mathfrak{F}o$ - sets in $(\mathbb{U}, \partial, \wp)$ such that $\tilde{G} \cap J(\tilde{A}) \neq \tilde{\Phi}, \tilde{H} \cap J(\tilde{A}) \neq \tilde{\Phi}, J^{-1}(\tilde{G}), J^{-1}(\tilde{H})$ are two non-null $\alpha \mathfrak{F}o$ - sets in $(\Omega, \mathfrak{F}, \wp)$, since \tilde{A} is $\alpha \mathfrak{F}$ - irreducible set.

Then, $J^{-1}(\tilde{G}) \cap \tilde{A} \neq \tilde{\Phi}$, $J^{-1}(\tilde{H}) \cap \tilde{A} \neq \tilde{\Phi}$, $(J^{-1}(\tilde{G}) \cap \tilde{A}) \cap (J^{-1}(\tilde{H}) \cap \tilde{A}) \neq \tilde{\Phi}$ $(J^{-1}(\tilde{G}) \cap J^{-1}(\tilde{H})) \cap \tilde{A} \neq \tilde{\Phi}$ $J^{-1}(\tilde{G} \cap \tilde{H}) \cap \tilde{A} \neq \tilde{\Phi}$ so $(\tilde{G} \cap \tilde{H}) \cap J(\tilde{A}) \neq \tilde{\Phi}$ $(\tilde{G} \cap J(\tilde{A})) \cap (\tilde{H} \cap J(\tilde{A})) \neq \tilde{\Phi}$ where $(\tilde{G} \cap J(\tilde{A}))$, $(\tilde{H} \cap J(\tilde{A}))$ are non-null α to - sets.

So, $J(\tilde{A})$ is $\alpha \mathfrak{F}$ - irreducible set in (U,∂, \wp) .

Definition 2.18.

For two $\alpha \mathfrak{F}$ - topological spaces (Ω, \wp) and $(\mathbb{U},\partial, \wp)$ a map $J: (\Omega, \mathfrak{F}, \wp) \rightarrow (\mathbb{U}, \partial, \wp)$ is $\alpha \mathfrak{F}\mathfrak{C}$ - map if the image of any $\alpha \mathfrak{F}\mathfrak{C}$ - set in (Ω, \wp) is $\alpha \mathfrak{F}\mathfrak{C}$ - set in $(\mathbb{U},\partial, \wp)$.

Theorem 2.19.

Let $J: (\Omega, \mathfrak{F}, \mathfrak{G}) \to (\mathbb{U}, \partial, \mathfrak{G})$ be an $\alpha \mathfrak{F}c$ - bijective map from a \mathfrak{F} - topological space $(\Omega, \mathfrak{F}, \mathfrak{G})$ into a \mathfrak{F} - topological space $(\mathbb{U}, \partial, \mathfrak{G})$, if $(\Omega, \mathfrak{F}, \mathfrak{G})$ is $\alpha \mathfrak{F}$ - irreducible space, then $(\mathbb{U}, \partial, \mathfrak{G})$ is $\alpha \mathfrak{F}$ irreducible space.

Proof.

Let \tilde{B} be $\alpha \mathfrak{F}$ - set in $(\mathbb{U}, \partial, \wp)$ to prove $(\mathbb{U}, \partial, \wp)$ is $\alpha \mathfrak{F}$ - irreducible since J is bijective. Then, there exist \tilde{A} in (Ω, \wp) such that $J(\tilde{A}) = \tilde{B}$ since $(\Omega, \mathfrak{F}, \wp)$ is $\alpha \mathfrak{F}$ - irreducible space, then $\alpha \mathfrak{F}$ - $\operatorname{cl}(\tilde{A}) = \tilde{\Omega}$, since J is bijective $\alpha \mathfrak{F}$ c - map, then $J(\alpha \mathfrak{F}$ - $\operatorname{cl}(\tilde{A}))$ $= J(\tilde{\Omega}) = \tilde{\mathbb{U}}, J(\alpha \mathfrak{F}$ - $\operatorname{cl}(\tilde{A})) = \alpha \mathfrak{F}$ - $\operatorname{cl}(J(\tilde{A}))$ $\alpha \mathfrak{F}$ - $\operatorname{cl}(J(\tilde{A})) = \tilde{\mathbb{U}} \Longrightarrow \alpha \mathfrak{F}$ - $\operatorname{cl}(\tilde{B}) = \tilde{\mathbb{U}}$ Thus $\tilde{B} \alpha \mathfrak{F}$ - dense set in (U,∂, \wp) By theorem 2.8. (U,∂, \wp) is $\alpha \mathfrak{F}$ - irreducible space.

Theorem 2.20.

Let $J: (\Omega, \mathfrak{F}, \wp) \to (\mathbb{U}, \partial, \wp)$ be an $\alpha \mathfrak{F}$ - continuous bijective map from a \mathfrak{F} - topological space $(\Omega, , \wp)$ into a \mathfrak{F} - topological space $(\mathbb{U}, \partial, \wp)$, if $(\Omega, \mathfrak{F}, \wp)$ is $\alpha \mathfrak{F}$ - reducible space, then $(\mathbb{U}, \partial, \wp)$ is $\alpha \mathfrak{F}$ - reducible space. **Proof**

Proof.

Let \tilde{B} be $\alpha \mathfrak{F}$ - set in (U,∂, \wp) to prove that (U,∂, \wp) is $\alpha \mathfrak{F}$ - reducible.

Since *J* is bijective, then there exist \tilde{A} in $(\Omega_{,,,\emptyset})$ such that $J(\tilde{A}) = \tilde{B}$.

Since $(\Omega, \mathfrak{F}, \wp)$ is $\alpha \mathfrak{F}$ - reducible space which provides $(\Omega, \mathfrak{F}, \wp)$ is an $\alpha \mathfrak{F}$ - disconnected space. Again, *J* is bijective $\alpha \mathfrak{F}$ - continuous map and so (U, ∂, \wp) is an $\alpha \mathfrak{F}$ - disconnected space, and therefore (U, ∂, \wp) is $\alpha \mathfrak{F}$ - reducible space.

Definition 2.21.

The map *f* from $\alpha \mathfrak{F}$ - space ($\Omega, \mathfrak{I}, \wp$) to $\alpha \mathfrak{F}$ - space (U, ∂, \wp) satisfy :

(1) f is $\alpha \mathcal{F}$ - continuous.

(2) f is $\alpha \mathfrak{F}$ - bijective.

(3) f^{-1} is $\alpha \mathfrak{F}$ – continuous (or f is $\alpha \mathfrak{F}$ - open).

Is called $\alpha \mathfrak{F}$ - homeomorphism.

The next corollary show that the $\alpha \mathfrak{F}$ - irreducible space is $\alpha \mathfrak{F}$ - topological property.

Corollary 2.22.

Let J be $\alpha \mathfrak{F}$ -homeomorphism from $\alpha \mathfrak{F}$ topological space $(\Omega, \mathfrak{F}, \wp)$ onto $\alpha \mathfrak{F}$ - topological space (U, ∂, \wp) . If $(\Omega, \mathfrak{F}, \wp)$ is $\alpha \mathfrak{F}$ - irreducible space, then (U, ∂, \wp) is $\alpha \mathfrak{F}$ - irreducible space. **Proof.**

Directly from Definition 2.19. and Theorem 2.20. The next corollary show that the α F-reducible space is α F - topological property.

Corollary 2.23.

Let J be $\alpha \mathfrak{F}$ - homeomorphism from $\alpha \mathfrak{F}$ topological space (Ω, \wp) onto $\alpha \mathfrak{F}$ - topological space (U,∂, \wp) . Then, if (Ω, \wp) is $\alpha \mathfrak{F}$ - reducible space, then (U,∂, \wp) is $\alpha \mathfrak{F}$ - reducible space.

Proof. Directly from definition 2.21 and theorem 2.20.

Examples 2.24.

For $\Omega = \{m, n, L\}$, $\wp = \{e\}$ be the set of parameters. Let
$$\begin{split} \tilde{O} &= (e, \{ \mathbf{m}^{0.1}, \mathbf{n}^{0}, \mathbf{L}^{0.3} \}), \\ \tilde{B} &= (e, \{ \mathbf{m}^{0}, \mathbf{n}^{1}, \mathbf{L}^{0} \}), \\ \tilde{\Phi} &= (e, \{ \mathbf{m}^{0}, \mathbf{n}^{0}, \mathbf{L}^{0} \}), \\ \tilde{\Omega} &= (e, \{ \mathbf{m}^{1}, \mathbf{n}^{1}, \mathbf{L}^{1} \}), \\ \text{with } \mathfrak{F} - \text{topology } \mathfrak{F} &= \{ \tilde{\Phi}, \tilde{\Omega}, \tilde{O}, \tilde{B} \}. \end{split}$$
The elements of are $\alpha \mathfrak{F} \text{o-sets.}$

Since $\tilde{O} \cap \tilde{B} = \tilde{\Phi}$ so \tilde{O} , \tilde{B} are non-null α Foseparated sets, then the space $(\Omega, \mathfrak{F}, \wp)$ is $\alpha \mathfrak{F}$ disconnected space and so $(\Omega, , \wp)$ is $\alpha \mathfrak{F}$ -reducible space.

Let $J: (\Omega, \mathfrak{F}, \mathfrak{G}) \to (\mathbb{U}, \partial, \mathfrak{G})$ be $\alpha \mathfrak{F}$ -homeomorphism , $J(\mathbf{x}_{ij}) = J(\mathbf{e}i, \{h_j^{kij}\}) = (\mathbf{e}i, \{h_j^{1-kij}\})\}, \forall kij \in [0,1],$ where $J(\tilde{O}) = J((\mathbf{e}, \{\mathbf{m}^{0.1}, \mathbf{n}^0, \mathbf{L}^{0.3}\}))$ $= (\mathbf{e}, \{\mathbf{m}^{0.9}, \mathbf{n}^1, \mathbf{L}^{0.7}\}),$ $J(\tilde{B}) = J((\mathbf{e}, \{\mathbf{m}^0, \mathbf{n}^1, \mathbf{L}^0\}))$ $= (\mathbf{e}, \{\mathbf{m}^1, \mathbf{n}^0, \mathbf{L}^1\})$ and

 $J(\widetilde{\Phi}) = \widetilde{\Omega}, J(\widetilde{\Omega}) = \widetilde{\Phi}.$

Since *J* is $\alpha \mathfrak{F}$ -open map, then the images are $\alpha \mathfrak{F}o$ - sets in $(\mathbb{U}, \partial, \wp)$.

Since $J(\tilde{O}) \cap J(\tilde{B}) = \Phi$, so \tilde{O} , \tilde{B} are non-null α Fo - separated sets, therefore (U,∂, \wp) is α Fdisconnected space and so is an α F - reducible space.

CONCLUSIONS

We define \mathfrak{F} -irreducible sets, $\alpha \mathfrak{F}$ - irreducible sets in \mathfrak{F} - topological spaces, and provide equivalent definitions with examples. We also define $\alpha \mathfrak{F}$ continuous and prove that the $\alpha \mathfrak{F}$ -continuous image of $\alpha \mathfrak{F}$ -irreducible set is $\alpha \mathfrak{F}$ - irreducible set. Define $\alpha \mathfrak{F}$ -close map, $\alpha \mathfrak{F}$ -homeomorphism and prove that $\alpha \mathfrak{F}$ -irreducible ($\alpha \mathfrak{F}$ -reducible) space is $\alpha \mathfrak{F}$ -topological property.

Disclosure and conflict of interest: The authors declare that they have no conflicts of interest.

REFERENCES

- Abd Alrahman, Abd Allah S, Aslam M., Muhammad S.K., "A study on fuzzy soft set and its operations", Annals of Fuzzy Mathematics and Informatics Volume 6, No. 2, (2013), pp.339-362.
- [2] Aras G. C., Bayramov S., "Some results on fuzzy soft topological spaces", Hindawi Publishing Corporation Mathematical Problems in Engineering, Vol. (2013), pp.1-10. https://doi.org/10.1155/2013/835308

[3] Aygunoglu A., Vildan Cetkin , Halis Aygun , "An introduction to fuzzy soft topological spaces",

69

Hacettepe Journal of Mathematics and Statistics, Vol.43 ,No. 2, (2014), pp.193 - 204.

- [4] Cagman N., Enginoglu S., Citak F.," Fuzzy soft set theory and its applications", IJFS, Vol.8, No.3, (2011), pp.137-147.
- [5] Hussain S.," On Weak and Strong Forms of Fuzzy Soft Open Sets", Fuzzy Information and Engineering, Vol. 8, No. 4, (2016), pp.451-463.
 <u>https://doi.org/10.1016/j.fiae.2017.01.005</u>
- [6] Mahanta J., Das P.K., "Results on fuzzy soft topological spaces", Arunachal Pradesh, INDIA, arXiv:1203.0634v1, (2012), pp.791-109.
- [7] Maji P.K., Roy A.R., Biswas R., "Fuzzy soft sets", J.Fuzzy Math., Vol.9, No.3, (2001), pp.589-602.
- [8] Molodtsov D., "Soft set theory first results", Computers and Mathematics with Applications, Vol. 37, (1999),

pp.19-31.

https://doi.org/10.1016/S0898-1221(99)00056-5

- [9] Naz M.,Shabir M., "Fuzzy soft sets and their algebraic structures", World Applied Sciences Journal, Vol.22, (2013), pp.45-61.
- [10] Shabir M., Naz M.," On soft topological spaces", Comput. Math. Appl. Vol. 61, (2011), pp.1786-1799. <u>https://doi.org/10.1016/j.camwa.2011.02.006</u>
- [11] Tanya B., Kandemir M. B., "Topological structure of fuzzy soft sets", Computer and Mathematics with Applications Vol. 61, (2011), pp.2952 - 2957. <u>https://doi.org/10.1016/j.camwa.2011.03.056</u>
- [12] Zadeh L. A., "Fuzzy sets", Inform. and Control, Vol. 8, (1965), pp.338-353.
 https://doi.org/10.1016/S0019-9958(65)90241-X

How to Cite

M. H. Mahmood, "On α-Fuzzy Soft Irreducible Spaces", *Al-Mustansiriyah Journal of Science*, vol. 34, no. 1, pp. 65–70, Mar. 2023.