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INTRODUCTION
Let ' denote by class of meromorphic functions of
analytic in unit diskU* ={w:w € C,0 < |w| <
1} = U\{0} of the form

fw)=w"1+ Z a,w* a, =0 (1)

We denote by Y¢(o), Yx(o) ,0<o0 < 1the
subclass of ) that are meromorphic univalent
meromorphically, =~ meromorphically  starlike
functions of ordergand meromorphically convex
functions of ordero, respectively.

A function f € Yx(o) if and only if

wf" (w) .
m{—<1+m>}>U,WEU (2

Similarly, a function f € }.s(o) if and only if

? {—Wf’(W)

W}»,e U,0<o<1) (3

80

defined by a novel operator Ig’mf (w) and obtain coefficient estimates, closure theorems,

convolution properties, partial sums, and §- neighborhood for the class H;,m (¢, p,m,V,C,4d).

KEYWORDS: Meromorphic functions; coefficient estimates; partial sums; starlike functions;
convex functions.

AadAl

Jpanlly l,f,mf(Z) aa e Laday Sl das sl el il JSE Apalal U1 sall (e e 8 A58 Ui i g Lied
(sl Boslaally el Gle geadlly ca@lailyl atlad s (@Y c_ﬂ_)).Lu} ¢ Jalzal) Gl _pass L;c

HS (6, p,m,V,C,d)

There are many other classes of meromorphically
univalent functions that has been extensively
studied (see [1, 2, 3, 4, 5, 6, 7]).

For functions f(w)=w1+3¥% aw* and
gw)=wt4+3¥2 bw*, we define the
Hadamard product of f and g is given by

(f * g)(W) =w™ 4+ KzzlaKbKWK'aKbK (4)
=0

Let ¢, p be positive real numbers. Motivated by the
Salagean operator [8]. We consider the linear
operator Hy(w): ¥, - ¥, defined by [9]

H;(W)=W‘1+§:(—K+Z+1>CWK (5)

We think that a linear operator Q,,f(w):Y, —
Ywhich defined by the following Hadamard
product (or convolution):

me(W) = ¢m(W) * f(W)
where ¢,,(w) = w™2Li,,,(w)[10] and
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. o Wk
le(W) = Zk=1k—m,m 2 2

o1
Qufw) =w™t + Z makwx.
K=0

Next, we define the linear
Tnf(w):Y = Y as follows [10]:

T ) = {0f ) — 5700]

operator

w4+ ;ﬁax w’, (m € N).(6)

We consider operator Iglmf(w):2—>2 which
defined by the following Hadamard product of
operator Hg (w) and the operator T, f (w)

Lo mf W) = Hy(w) * Ty f (W)
Ig,mf(w) =w 1+ z
k=1
For ¢, p be positive real numbers and (m € N).
Definition 1.1. [11]. Let H;,(s,p,mV,C,d)
denote a Subclass of ) consisting functions of the
form (1) that satisfy the requirement

1 (w (15 mf W)

(k+p+ 1)

k
pS(x +2)m wew?, (7)

1+Cw
d I3 o f (W) 14+ Vvw
or, equivalently, to:
w (I mf W) .
Ipmf (W) cL@®
w (1 f W) |
Ig,mf(W) + [(C—=V)d +V]

For-1<V<(C<1decC/{0},meN and ¢,p
be positive real numbers.

Coefficient Estimates

We obtain necessary and sufficient condition for a
functionf (w) for the class H; ,,, (s, p,m, V, C, d).
Theorem 2.1. Let f € Y, by given by (1). Then f €
Hz,m(g, p,m,V,C,qd)if

[oe)

2.

k=1

Rek+1+(C—-V)d+V](k+p+1)S
pS(Gc+2)™
< (C-=WM)Idl(9)

|yl

81

Proof. Iff € H; ,,(s,p,m,V,C,d), then by (8) we
get

w (I mf W) »
15 f W) -
w (IS uf W)
W‘f‘ [(C—V)d-l-V]

W (IS f (W) + 5 f )

Vw (15, f ) + 1€ = V)d + V1 (15, f )
<1

!
—1,yoo (etp+1)6 —1,yo0  (ep+1)S g
w(w +Z,€=1p§(K+2)makw +w +ZK=1D§(K+2)makw

!
o (e+p+1)§ k) _ ( —1,yo0 (r+p+1)§ k)
K= reg 2y MOk W +[(C-V)d+V]|w +Zk:1pC(K+z)makW

Vw(w—1+2
1

3100 (k+p+1)¢
K=1pS(k+2)M

(k+1)a;w™

<1

o (k+p+1)§ K

(C-V)dw=1+[(C-V)d+V+k] ZK=1pC(K+z)maK

§[2K+1+(C—V)d+V](K+p+1)C
§ m

] pS(k + 2)

< (C-V)dw|™},

when w— 1, we obtain

|l lw*|

o)

Z[2;c+1+(C—V)d+V](;c+p+1)<|a |

L pS(k +2)m *
< (C-Wld|,

then

i[21c+1+(C—V)d+V](K+p+1)§|a I

L ps(k +2)™ §
< ( -V)|d|.

Thus,f(w) € H;,m(Q p,m,V,C,d).

Corollary 2.2. If f € H; ,,(¢,p,m,V, C,d), then

; . lal
< ps(k +2)"(C —V)ld| (10)
Rk+1+(C—-V)d+V](k+p+ 1)
The result is sharp for the function
fw)
:W_1
S(k+2)™(C —-V)|d
pS(k+2)™(C —V)|d| W (11)

+[2k+1+(C—V)d+V](k+p+1)<

Closure Theorems
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The function f; be defined, for j = 1,2,3,---,n, by

f)(W) = W_1 + Z|ak,j|wk, Ay, j > 0. (12)
k=1

Theorem 3.1. Let the function f;(w) =w™!+
Yieilax j|w¥, beinthe class Hy ., (¢, p,m,V, C, d).
Then the function h defined by

[ee] 1 [ee]
h(w)=w™!+ Z EZ'“"'A wk, (13)
k=1

j=1
also belongs to the class Hg,m(g, p,mV,C,d).

Proof. Since f; € H; ,,(¢,p,m,V,C,d), it follows
from Theorem 2.1, that

[00]

Rk+1+(C—-V)d+V](k+p+1)S
Z o (k + 2)m |
< (C-V)|d|,
For every j = 1,2,3,---,n. Hence

Rk+1+C-V)d+V]k+p+1D5[ 1w
2 psk +2)7 2 2o

(o]
k=1 j=1

v (o 2k+1+(C=V)d+V]k+p+1)S
ZZ (Z p(k + 2)m |“’<‘f|>

j k=1
< (€ —-WM)d|.

j=1
By Theorem 2.1,
Hy (s, p,m,V,C,d).

k=1

it follows that h(w) €

Theorem 3.2. The class H,,(s,p,m,V,C,d) is

closed under convex linear combinations.
Proof. Assume

fiw) =wt+ Zlak,jlwk,j =123,-,n,
k=1

are in class Hj.,(c,p,mV,C,d). Then
demonstrating that the function exists is sufficient.

h(w) ={fi(w)+ (1 -Of,(w),0<{ <1,
is in the class H; ,,(s,p,m,V,C,d). Since for 0 <
7 <1,

hw) = w + > [¢aga| + (1 = Dla|] wh
k=1

In view of Theorem 2.1, we have:

S 2k+1+(C-Vd+V]k+p+1)S
+ (1= O)|ag,|]

2+ 1+ (C—V)d+V]k+p+1)S
g,; pSGc + 2)™ |
+ (1

0 C [2K+1+(C—V)d+V](:c+p+1)¢|a |
- m K,2

o] pS(ic + 2)
<J{C-Mldl+ A -9 -V)|d]
= (C—-Wld|,

which implies that h(w) € H ,,, (s, p,m,V, C, d).

Convolution Properties
Theorem 4.1. If the functions f(w) and g(w)are
in the class Hj, ,,, (¢, p,m,V, C, d), then

(f * )W) = w™h + > acbow®,
k=1

is in the class Hy ,,, (s, p,m, V, C, d).
Proof. Suppose f(w) and g(w) are in the class
H; (s, p,m,V,C,d). By Theorem 2.1, we have

[ee]

Z[2;c+1+(C—V)d+V](zc+p+1)c

. peHm(C - V)ld] o]
K=
<1,
and
i[21c+1+(C—V)d+V](K+p+1)§|b I
] pS(ic + 2)™(C —V)|d| g
K=
<1
Sois (f * g)(w). Furthermore,
A2k +1+(C—V)d+V](k+p+1)S
> el el
pS(c +2)™(C —V)|d|

2k +1+(C—=V)d+V]k+p+1\
= Z( 250k + 2)"(C —V)|d] ) @il

A2k +1+(C—V)d+V]k+p+1)S
= (Z P e+ DM~V '“"')
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2k+1+(C—-V)d+V](k+p+1)°

ps(k +2)™(C —V)ld|

N <§: [ _ — be|>
< 1K=1

Hence by Theorem 2.1,
(f *9)(w) € Hy 1, (5,p,m V, C, ).

Partial Sums
In this section, we investigate the ratio of a function
of the form (1) to its sequence of partial sums

n
LW =w Y qwk,
k=1

when the coefficients are small enough to satisfy
condition (9). We'll establish clear lower bounds

for
fw) fo(w)
: (fn<w)> & (f(W) )
Unless otherwise stated, we will assume that f is of

the form 1 and that its sequence of partial sums is
denoted by

fnw) =w~ +Zakw

Theorem 5.1. If f of the form (1) satisfies
condition (9), then

: <]]:(< ))> Bt
and
n\W dns1
% <];((W))> = T+duyy’ (15)
where
_[2k+1+(C-V)d+V](k+p+ 1)
" ps(ic+2)™(C — V)|d|

Proof. In order to demonstrate inequality 14, we

must first establish
s |2 (11— )]
faw) dn+1
Aot [W: + Y w1 — dn+1l
wl+ Y0 aew dnt1
1+ Y0 e W 4+ dpg Yiepgr @ W
14+ X0, a,wrtt

K+1

83

1+ h,(w)
1+ h,(w)
If we set
1+hw) 142z(w)
1+h,(w) 1-—2z(w)
then

2z(w) + z(w)hy(w) + z(w)h,(w) =
hy(w)—hy(w),

hy(W)—h,(w)

2W) = ) + )
Thus
z(w)
_ Ani1 Dren+1 Qe wiH
2+2 ZQ:l a,witl +d, 4 Z;ozn+1 Ay witl’
and
d -~ a
2—2 szllakl - dn+1 Zx=n+1|a;c|

Now one can see that
|z(w)| < 1, if and only if

2dp 41 Den+1l ] <2 — 225
which implies that

Zlaxl + s Z o] < 1.(16)

K=n+1

1|aK|I

Finally, to demonstrate the inequality in 14, it
suffices to show that the left-hand side of 16 is
constrained above by Y»._;d.la.|, which is
equivalent to

Z(l K)|ak|+2(dn+1 dlal

K=n+1
> 0.(17)

The inequality proof in 14 is now complete by
using equation 17.
To prove inequality 15, we set

fn(W) [ )
1+d —
(1+dn1a) <f(w) T+ dyys
1+ XY iacw wit — Ans1 Dren+1 Qi wtt
14 Y, a,wktt
14 z(w)
T 1-z(w)

Where:
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|z(w)]
1+ dn+1) Z;Oco=n+1|ax|

= o
2 =2%qlae] = (1 + dnig) Xicopalal
<1.(18)

This last inequality in 18 is equivalent to

Z la,| < 1.(19)

K=n+1

n
Zla}cl + (1 + dn+1)
k=1

Finally, we can observe that the left-hand side of
the inequality in 19 is bounded above
Yieeq dila, |, we have completed the proof of (15),
which concludes the proof of Theorem 5.1.

Neighborhoods for the Class H ,,, (¢, p,m,V,C, d)
In this section, we define the § — neighborhood of
a function f(w) and establish a relation between
& — neighborhood and H;,,(sc,p,m,V,C,d,y)
class of a function.

Definition.6.1. A function f € 3, is said to be in
the class H; . (c,p,m,V,C,d,y) if there exists a
function g € H; ,,(¢,p,m,V, C,d) such that

fw

g(w)
Following up on previous works on neighborhoods
of analytic functions by Goodman [12], Shinde et
al [13] and Ruschweyh [14]. We defined the § —
neighborhood of a function f € ¥, by

<1-y,0<y<1.(20)

_ Ns(f)
(g €Y, gw)=w'+ Z bKWK\
— w K=1 (21)
K 2 Kla, — by | < 6

Theorem 6.1. If g € H; (¢, p,m,V,C,d) and

|4
=1
B 8B+ [(C-=WIdl+ VD@2 +p)*
B+ =Mldl+ VD2 + p)* = psB)™(C —V)ld|

Then Ns(g) © H;,m(g, p,m,V,C,d,y).
Proof. Let f € N5(g). Then we find from (21) that

oo

Z kla, — by| <6,

k=1

(22)

84

this implies that the coefficient of inequality
Yreilae — be| < 6.(x €N).

Since g € H;,,(c,p,m,V,C,d), we have
o pt(3M(Cc-V)d|
Zim1be < G v S0 hat
fw) | ZRala. — bl
g(W) 1 _Zloco=1brc
- §(B+I(C€ =WIdl+ VD)2 +p)¢
~ B+ C=MIdl+ VD@2 + p)s = ps(3)™(C - V)Id]
=1-y.
Provided y is given by (22).
Hence, by Inequality 20, fe

H; (s, p,m,V,C,d,y) for y given by (22), which
completes the proof of Theorem.

CONCLUSIONS

This study looked at some basic features of
geometric function theory and presented a new
linear operator. As a result, various conclusions
about coefficient estimates, closure theorems,
convolution  properties, partial sums, and
neighborhoods were reached.
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