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Abstract 
The unconstrained optimization problem can be solving by using the conjugate gradient 

method. In this paper, we suggest new hybrid nonlinear conjugate gradient methods, which 

have the descent at every iteration and globally convergence properties under certain 

conditions. It can be seen clearly that new hybrid method are efficient for the given test 

problems depending on their numerical results. 
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خلاصـةال  
 مترافق رج المسائل الامثلية غير المقيدة يمكن حلها باستعمال طريقة التدرج المترافق.  في هذا البحث تم اقتراح طريقة تد

ينا بشكل رأ .تحت شروط معينة التقارب الشامل تي الانحدار عند كل تكرار وخاصيةتمتلك خاصي مهجنة جديدة والتي

 .العددية ى على نتائجهاالمُعط سائل الاختبارمعتماد با كفوءة  دةلجديا اهجنةمالواضح بأن الطريقة 

Introduction  
Conjugate gradient methods (CG) methods are 

used to solve a class of numerical methods of 

the following unconstrained optimization 

problem:  

 nRxxf )(min  )1(  

where f  is a smooth function of n  variables. 

We recall that these types of methods are 

iterative. Starting with an initial point ,1
nRx   

they generate a sequence ,n
k Rx  by the 

process: 

,1 kkkk dxx   )2(  

where kd  is a direction vector and the step size 

k   is  chosen  in such  a way  that  0k  and 

satisfies the Wolfe (W) conditions : 

k
T
kkkkkk gdxfdxf  1)()(   )3(  

k
T
kk

T
kkk gdddxg 2)(    )4(  

with 2/11  and 121  , where )( kk xff   

, )( kk xgg  , kg  is the gradient of f  evaluated 

at the current iterate kx . The search direction is 

calculated by :  
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Conjugate gradient methods differ in their way 

of defining the conjugancy coefficient k . In 

the literature, there have been proposed several 

choices for k  which give rise to distinct 

conjugate gradient methods. Thus we obtain 

six basic conjugate gradient methods: 

,,, 1
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(HS-Hestenes and Stiefel [8], PR-Polak and 

Ribire [12], LS-Liu and Storey [11]), 
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(DY-Dai and Yuan [5], FR-Fletcher and 

Reeves [6], CD-conjugate descent [7]). 

These methods can be divided into two groups 

by the numerator used. Methods HS, 

PR, LS are more efficient than DY, FR, CD 

(since they keep the conjugacy of direction 

vectors more successfully), but their global 

convergence cannot be proved without 

additional modifications. Methods DY, FR, CD 

are globally convergent (with some limitations 

concerning the step size selection), but they are 

less efficient than HS, PR, LS methods. More 

details can be found in [10].  

The idea to attach these methods in sequence 

to obtain efficient algorithms leads to hybrid 

conjugate gradient algorithms. More details can 

be found in [2] [3]. 

Recently, the authors in [4] planned new 

conjugate gradient methods based on the 

strictly convex quadratic function 

approximation involves computation of the 

k
T
k Gsd  in practice it is often preferred to 

replace the exact computation with the use of 

an approximate the Hessian matrix (or 

sometimes its inverse) with a symmetric 

positive definite matrix through some effective 

procedure. Conjugate gradient methods are 

defined by the formula:  

1

11




k

k
T
kBSQ

k

gg


  )8(  

Choice k  taken in ),8(  giving the conjugate 

gradient methods strong convergence 

properties and, in the same time, they may have 

modest practical performance.  

On the other hand, methods may not be 

convergent, but usually they have better 

computer performances. The choices of k  in 

these methods are: 

1

1




k

k

T

kINQ

k

yg


  )9(  

where 

)(2/)( 1
2

1   kkk
T
kkk ffdg  )10(  

Using good convergence properties of the first 

group of methods and, in the same time, good 

computational performances of the second one, 

here we want to exploit choices of k  in )8(  

and )9( . 

The remaining parts of the paper are in the 

order.  In Section 2, we propose a new hybrid 

nonlinear conjugate gradient method. In 

Section 3, we present the algorithm and show 

that our corresponding formula can always 

guarantee descent condition. In Section 4, 

convergence analysis for the proposed method 

is presented. Section 5 entails the proposed 

method numerical results and also the 

representation of proposed method against 

some CG methods. 

 

Materials and Methodology 

A Convex Combination  
 In this paper we use another combination of 

BSQ and INQ methods. The parameter k  of 

the hybrid conjugate gradient method of BSQ 

and INQ  is formulized as :  

BSQ

kk

INQ

kk

HBSQ

k   )1(  )11(  

Hence, the direction kd  is given by : 

k

HBSQ

kk

HBSQ

k

HBSQ sgdgd   1100 ,  )12(  

 The parameter k  is the scalar parameter to be 

determined later. We see that, if ,0k  then 
INQ
k

HBSQ
k    and ,1k  then BSQ

k
HBSQ
k   . 

On the other hand, if ,10  k  then HBSQ
k  is 

a proper convex combination of the parameters 

is INQ
k  and BSQ

k . 

Theorem 1.  

           If the relations )11(  and )12( hold, then : 

BSQ

kk

INQ

kk

HBSQ

k ddd 111 )1(     )13(  

Proof : 

           Having in view the relations BSQ
k  and 

,
INQ
k  the relation )11(  becomes: 
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So, the relation )12(  becomes: 
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In further consideration of the relation ),15(  we 

can get : 

,))1(( 111 k
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kkkkk
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The last relation yields: 

))(1()( 111 k
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From )18(  we finally conclude: 
BSQ
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k ddd 111 )1(    . )19(  

Our way to find k  is to make that the 

conjugacy condition: 

0HBSQ

k

T
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Holds: 

Multiplying )15(  by T
ky   from the left and 

using ),20(  we get: 
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i.e. 
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Finally, 
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It is possible that ,k calculated as in ),25(  has 

the values outside the interval [0, 1]. However. 

In order to have a real convex combination in 

)14(  the following rule is used : if ,0k  then 

set 0k  in )14(  i.e. INQ
k

HBSQ
k   , if ,1k  

then set 1k  in )14(  i.e. BSQ
k

HBSQ
k   . 

Therefore, under this rule for k  selection, the 

direction 1kd  combines the properties of the 

INQ and the BSQ algorithms in a convex way. 

Algorithm and Lemmas  
Setting up the global convergence of the 

proposed methods, will need the assumption on 

objective function, which have been used often 

in the literature to analyze the global 

convergence of nonlinear conjugate gradient 

methods. 

 Assumption (1) 

i. The level set  )()( 0xfxfRxS n   is 

bounded, i.e., there exists a positive constant 

0  such that:    

Sxx  , . )26(  

ii. In some neighborhood  U  and )(, xfS  is 

continuously differentiable and its gradient is 

Lipschitz continuous namely, there exists a 

constant 0L  such that:  

UxxxxLxgxg kkkkkk   ,,)()( 111 . )27(  

  Under these assumptions of )(xf , there exists 

a constant  0  such that :   

1kg . )28(  

Now we can obtain the new conjugate gradient 

algorithms, as follows: 

New Algorithm  

Step 1. Initialization. Select nRx 1  and the 

parameters 10 21   . Compute )( 1xf  and 
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1g . Consider  11 gd    and set the initial             

guess 11 /1 g . 

Step 2. Test for continuation of iterations. If  

6
1 10
 kg , then stop.                                

Step 3. Line search. Compute 01 k  satisfying 

the Wolfe line search condition (4) and (5) and 

update the variables kkkk dxx 1 . 

Step 4. Compute k  parameter computation. If  

,0)(1  k
T
kk

T
k sygg  then set ,0k  else set k  

as in )26(  respectively.  

Step 5.  Compute k  as in )11( . 

Step 6. Compute the search direction  1kd  as 

in )12( .  If  the  restart criterion of Powell 
2

11 2.0   kk
T
k ggg , is satisfied, then set 11   kk gd  

otherwise  set 1 kk  and  go to  step 2. 

Here we have to present descent property. 

Theorem 2. 

Assume that )27(  and )28(  hold and let Wolfe 

conditions )4()3(   hold. Also, let  ks  tend to 

zero, and let there exist some nonnegative 

constants 21 ,  such that:  

,
2

11 kk s   )29(  

kk sg 2

2

1  . )30(  

then HBSQ
kd   satisfies the descent condition. 

Proof : 

It holds 00 gd  . So, for ,0k  it holds  

0
2

000  gdgT . Multiplying )19(  by T
kg 1  

from the left, we get :              
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If ,0k  the relation )31(  becomes: 
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k dgdg 1111   . )32(  

So, if ,0k  the sufficient descent holds       

for the hybrid method, if it holds for INQ 

method. It is able to prove the descent for INQ 

method under the conditions of Theorem 2. It 

holds: 

k
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Multiplying )33( by T
kg 1  from the left, we get : 
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Using ,
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k  we get : 
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From ),35(  we get: 
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From Lipschitz condition we have ,kk sLy   

so : 
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But, using ),30()29(   we get : 
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But, because of the assumption ,0ks  the 

second summand in )38(  tends to zero, so there 

exists a number  ,10   such that: 
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Now, )38(  becomes: 
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i.e.  

0)1(
2
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T
k gdg  . )41(  

On the other hand, for ,1k  the relation )31(  

becomes: 

BSQ
k

T
k

HBSQ
k

T
k dgdg 1111   . )42(  

But, the BSQ method satisfies the descent 

condition [4] under the Wolfe line search. 

    Now, let 10  k  and from ),31(  we get : 
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We obviously can conclude now : 

011 
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Convergence Analysis  
For the target of this section we remind to the 

next theorem.  

Theorem  3.  

Consider any iterative method of the form )2(  

and )5( ,  where kd  satisfies a descent condition 

0k
T
k dg  and k  satisfies strong Wolfe 

conditions. If the Lipschitz condition holds, 

then either 

0inflim 
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k
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It was originally given by Hager and Zhang 

[9]. Now we give the next theorem.  

 

Theorem  4.  
Consider the iterative method of the form 

)26(),12(),31(,)2( . Let all conditions of 

Theorem 2 hold. Then either 0kg   for some

,k   or  

0inflim 


k
k

g . )47(  

Proof : 

        Let 0kg  for all k . Then, that lead to 

prove )47( . Suppose, on the contrary, that 

there exists a number ,0c  such that : 
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Next, it holds: 
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 wherefrom 
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d
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Using Theorem 3 we conclude that this is a 

contradiction. So, we finish the proof. 

 

Numerical  Results  
 In this section, we statement several numerical 

experiments. We test the HBSQ method on 

problems in the [1] and compare their 

performance to that of the FR         method [6]. 

We stop the iteration if the inequality 
6

1 10
 kg  is satisfied and all these 

algorithms are implemented with the standard 

Wolfe line search conditions with 001.01   

and 9.02   . In this paper, all codes were 

written in FORTRAN. Tables 1 list numerical 

results. The meaning of each column is as 

follows: NI : number of iterations. NF : number 

of function evaluations.
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Table 2: Relative efficiency of the new Algorithm  

                               FR algorithm              HBSQ algorithm          HBSQ with 5.0u  

63.40  % 63.21 % 100   % NI 

72.44 % 65.15 % 100   % NF 

 

Table 1: Comparison of different CG-algorithms with different test functions and different dimensions 

                                                  FR algorithm                   HBSQ algorithm              HBSQ with 5.0u  

NF NI NF NI NF NI n P. No 

26 18 20 14 25 15 100 1 

203 17 F F F F 1000  

89 50 91 53 231 124 100 2 

300 175 264 153 711 445 1000  

158 86 136 74 313 180 100 3 

121 65 158 82 F F 1000  

61 39 55 36 65 40 100 4 

57 38 390 47 68 43 1000  

119 76 123 76 161 102 100 5 

F F F F F F 1000  

132 83 128 84 123 74 100 6 

403 244 426 254 616 370 1000  

124 82 127 80 218 121 100 7 

384 243 361 234 634 345 1000  

223 32 286 33 1202 69 100 8 

1321 65 1649 81 1967 98 1000  

675 433 775 500 1066 671 100 9 

F F F F F F 1000  

148 97 149 97 150 95 100 10 

511 330 481 309 568 349 1000  

27 11 F F F F 100 11 

1401 58 27 12 131 60 1000  

F F 254 86 174 89 100 12 

174 71 F F 211 107 1000  

22 11 26 13 25 13 100 13 

25 12 33 16 29 15 1000  

25 14 22 12 156 122 100 14 

22 11 23 12 166 130 1000  

39 20 38 20 45 23 100 15 

49 22 48 22 55 27 1000  

6314 2239 5678 2232 8715 3531  Total 

Fail  : The  algorithm  fail to converge. 

Problems numbers indicant for : 1. is the Trigonometric, 2. is the Perturbed Quadratic, 3. is the Raydan 1, 4. is the Extended Three Expo Terms, 5. is 

the Generalized Tridiagonal 2, 6. is the Quadratic QF2, 7. is the TRIDIA (CUTE), 8. is the Extended Tridiagonal 1, 9. is the ARWHEAD (CUTE), 10. is 

the NONDIA (CUTE), 11. is the EDENSCH (CUTE), 12. is the LIARWHD (CUTE), 13. is the Extended Block-Diagonal BD2, 14. is the DENSCHNA 

(CUTE), 15. is the LIARWHD (CUTE) . 
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Tables 1, show that HBSQ outperforms FR 

about (65 %) test problems. Moreover, FR can 

solve all given test problems successfully. The 

method HBSQ performs faster than the method 

FR, but it failed to solve many problems 

however, the method HBSQ can almost solve 

all given test problems successfully. 

Table 1, give a comparison between the new 

hybrid descent methods and the Fletcher-

Reeves method taking nonlinear test function 

with n=100, 1000. This table indicates that the 

new Hybrid methods saves (34 - 36) % NI and 

(27 - 36) % NF, especially for our selected test 

problems. The Percentage Performance of the 

improvements of the Table 1 is given by the 

following Table 2. Relative Efficiency of the 

Different Methods Discussed in the Paper. 

 

Conclusions   
We have proposed new descent hybrid 

conjugate gradient methods, that is, the BSQ 

method and the INQ method. Under suitable 

conditions, we proved that these method 

converge globally. 

Extensive numerical results are also reported. 

The performance profiles showed that the new 

descent hybrid methods are efficient for the 

given test problems. 
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