Research Article

Hyperfactord of Shi arrangement $Sh(A_2)$ and $Sh(A_3)$

Alaa A. A. Al-Mujmaey, Rabeaa G. A. Al-Aleyawee*

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, IRAQ.

*Correspondent contact: dr.rabeea@uomustansiriyah.edu.iq

ArticleInfo	ABSTRACT	
Received 10/03/2022	In this paper, we introduce the region and the faces poset of shi arrangement that it was firstl introduced by JY. Shi. This is an affine arrangement, each of whose hyperplane is parallel t some hyperplane of Coxeter arrangement (Braid arrangement), the degrees and the exponents of this arrangement were found and we prove the shi arrangement is ahyperfactored arrangement	
Accepted 28/03/2022	when n=3 and not hyperfactored arrangement when n=4 arrangement. KEYWORDS Hyperplane arrangement, Braid arrangement, Shi arrangement.	
Published 25/09/2022	الخلاصة تم حساب الاساس (bases) وناقلات الاس (exponent vector)) للترتيبة (Sh(A ₃) والترتيبة (Sh(A ₂) ثم الحصول على التجزئة (partition) لهذه الترتيبات ومنها بر هنا ان (Sh(A ₃ ليست قابلة للحل الفوقي بينما (Sh(A ₂ غير قابلة للحل الفوقي.	

INTRODUCTION

Throughout this work, V is a finite-dimensional vector space over a field K (C or R) and S is symmetric algebra $[S \cong K[x_1, x_2, ..., x_n]$.

Arrangement of a hyperplane A is a set of finite affine hyperplane in V vector space. The dimension of A is denoted by dim (A) is defined to be dim(V), and the rank of A is the rank of any maximal in $A_{n}(rk(x) = codim(x) = n$ element dim(A)). When the rk(A) = dim(A) we say this arrangement is essential, If $\bigcap_{H \in A} H \neq \emptyset$ then A is central, and if the intersection of the finite family of A is empty then A is called centerless. Let (L_A) is the intersection poset of A containes all the nonempty intersection of hyperplanes partially ordered by reverse inclusion [1]. Let $\{e_1, e_2, \dots, e_n\} \subseteq V$, be the dual basis of $\{x_1, x_2, ..., x_n\}$. We define $D_i = D_{e_i}, 1 \le i \le n$, is the derivation $\frac{\partial}{\partial x_i}$, $D_i(f) = \frac{\partial f}{\partial x_i}$, $f \in S$, Notice that $\{D_1, D_2, \dots, D_n\}$ is a basis for $Der_k(S)$ over S. Therefore any θ is a derivation of S over K is

 $\theta = f_1 D_1 + f_2 D_2 + \dots + f_n D_n, \quad f_1, f_2, \dots, f_n \in S,$ Thus $Der_k(S)$ is free S-module of rank n.

Now A non-zero $\theta \in Der_k(S)$ is (homogeneous of polynomial degree) p if $\theta = \sum_{j=1}^n f_i D_i$ and $f_i \in S_p$ for $1 \le i \le n$, we say $pdeg\theta = p$, and $tdeg\theta = pdeg \theta - 1 =$. Let A be an arrangement with defining polynomial, then a module of *A*-derivation $D_s(A)$ of $Der_k(S)$ is define by $D_s(A) = \{ \theta \in Der_k(S) | \theta(Q) \in QS \} A$ is free arrangement if D(A) is a free module over *S*. The Shi arrangement of affine hyperplanes is the arrangement in \mathbb{R}^n of the form, $x_i - x_j = 0,1$ for $1 \le i < j \le n$ [2].

Definition 1.1 [3]: A region of a hyperplane arrangement *A*, is a connected component of the complement, $R^n - \bigcup_{H \in A} H$.

Definition 1.2 [4]:

The faces of *A* are the nonempty intersections of the form $F = \bigcap_{H \in A} H^{\sigma_H}$. where $\sigma_H \in \{+, -, 0\}$ and $H^0 = H$.

Faces of any hyperplane arrangement *A* can be described by specifying for every $H \in A$, which side of H contains the face. That is, for any $H \in A$ we define H^+ and H^- as two closed half spaces determined by *H* (the choice of which one is H^- is arbitrary), and let $H^0 = H$.

Example 1.3 [5]:

The A₃ Braid arrangement [6] Q(A) = (x - y)(x - z)(y - z). Notice that the sign sequences for the thirteen faces, with the maximum element (x = y = z) as shown in Figure 1.

Figure 1. The faces of A₃ Braid arrangement.

2. The Region of Shi arrangement $Sh(A_2)$, $Sh(A_3)$ [7, 8]:

The Shi arrangement dissects \mathbb{R}^n into $(n + 1)^{n-1}$ region, as was first proved by Shi [2]. There for, when n =3 this arrangement has (16) regions. Shi began by defining rank n sign types as triangular arrays $(X = (X_{ij})) \ 1 \le i < j \le n$ with entries form $\{+, -, 0\}$ The admissible sign types correspond to the region of his arrangement. He defined them as the sign types which satisfy the following condition: for all $1 \le i < t < j \le n$, the triple as belongs to the set D_A of admissible sign types of rank 3 of $Sh(A_2)$. and D_A is the set

If we order the symbols $\{0, +, -\}$ as - < 0 < +, then D_A can be seen as the rank 3 sign types where either $x_{12} \le x_{13} \le x_{23}$ or $x_{23} \le x_{13} \le x_{12}$, together with $x_{13} = +, x_{12} = x_{23} = 0$. In Figure 2 each region has been labeled with its type of sign.

Figure 2. The region of Shi arrangement $Sh(A_2)$.

Example 2.1:

In *Sh*(A₂) arrangement, each region defined by coordinate inequalities $x_1 > x_2 > x_3$.

Table 1.	The regions	of(\mathcal{A}_2)
----------	-------------	-----------------------

	Sign vector	Corresponding
Region	<i>x</i> ₁₃ `	Block-Ordered
	$x_{12} x_{23}$	Partition
x_2 ` > x_1 ` > x_3 `	+ + +	$((\{2\},\{1\},\{3\}))$
$x_1 = x_2 > x_3$	+ 0 +	$((\{1,2\},\{3\}))$
$x_1 > x_2 > x_3$	+ - +	$((\{1\},\{2\},\{3\}))$
$x_1 = x_3 > x_2$	0 - +	(({1,3},{2}))
$x_1 > x_3 > x_2$	- - +	(({1}, {3}, {2}))
$x_2 = x_3 > x_1$	- - 0	$((\{2,3\},\{1\}))$
$x_3 > x_1 > x_2$	-	$((\{3\},\{1\},\{2\}))$
$x_3 > x_1 = x_2$	- 0 -	(({3}, {1, 2}))
$x_3 > x_2 > x_1$	- + -	(({3}, {2}, {1}))
x_2 ` > x_1 ` = x_3 `	0 + -	$((\{2\},\{1,3\}))$
$x_2 > x_3 > x_1$	+ + -	(({2}, {3}, {1}))
$x_1 > x_2 = x_3$	+ + 0	(({1}, {2, 3}))
$x_1 = x_2 = x_3$	0 0 0	(({1, 2, 3}))
$x_3` = x_1` > x_2`$	+ 0 0	({3,1}, {2})
x_3 > x_2 = x_1	0 0 -	({3}, {2, 1})
$x_1 > x_3 = x_2$	0 - 0	$(\{1\}, \{3, 2\})$

3. The faces of Shi arrangement *Sh*(A₂), *Sh*(A₃) [9]:

In order to compute the number of faces in the Shi arrangement we used the formula

$$f_{k} = \left(\frac{n}{k}\right) \sum_{i=0}^{n-k} \left(\frac{n-k}{i}\right) (-1)^{i} (n-i+1)^{n-1}$$

where f_k is the number of k-dimensional faces of the Shi arrangement in \mathbb{R}^n for $0 \le k \le n$

[4]. Thus, the $Sh(A_2)$ when the dimension is (2) this arrangement has (21) faces and if the dimension is (1) the Shi arrangement has (6) faces. Then the set of all faces of $Sh(A_2)$ is (43) with the (16) region. Now for the $Sh(A_3)$ when the dimension is (3) the Shi arrangement $Sh(A_3)$ has (244) faces, and when the dimension is (2) this arrangement has (144), and if the dimension is (1) it has (24) faces, with (125) region.

Definition 3.1 [6]:

Let *A* is a free arrangement for any homogenous basis $\theta_1, \theta_2, ..., \theta_n$ of D(A)Then the degree of *A* is $degA = \{tdeg \ \theta_1, tdeg\theta_2, ..., tdeg\theta_n\}.$

Definition 3.2 [9]:

Let *A* be free arrangement with deg $A = \{a_1, a_2, ..., a_n\}$, we define the exponent of *A* by $expA = \{b_1, b_2, ..., b_n\}$, where $b_i = a_i + 1, 1 \le i \le n$, i.e., $expA = \{pdeg \ \theta_1, pdeg \ \theta_2, ..., pdeg \ \theta_n\}$, where $\{\theta_1, \theta_2, ..., \theta_n\}$ is a basis of D(A).

Definition 3.3 [9]:

 $b = (b_1, b_2, ..., b_n)$ exponent vector or (b - vector) where $b_i = |P_i|$ for $1 \le i \le n$ if $|P_i| = 1$ then P_i is a singleton.

Definition 3.4 [10]:

Let *P* be the partition of a hyperplane arrangement *A*, then *P* is nice for if:

- 1. It is independent.
- 2. The induced partition P_x admit a block which is a singleton $\forall X \in L_A \setminus \{V\}.$

Theorem 3.5 [8]:

The hyperplane arrangement is said a hyperfactored if it is a nice partition.

Theorem 3.6:

Shi arrangement $Sh(A_2)$ is a hyperfactored arrangement.

Proof:

By using program (1) we have $D_1(f) = \frac{\partial f}{\partial x_1}$, $D_2(f) = \frac{\partial f}{\partial x_2}, \frac{D_3(f) = \partial f}{\partial x_3}$ of $Sh(A_2) D_1(f) = \frac{\partial f}{\partial x_1}$ $(x_2 - x_3)^*(x_3 - x_2 + 1)^*(x_2 - 2^*x_1 + x_3 + 1)^*(x_2 - 2^*x_1 + x_3 - 2^*x_1 + x_3 - 2^*x_1 + x_3 + 2^*x_2 + x_3 + 2^*x_1 + x_2).$ $\frac{D_2(f) = \partial f}{\partial x_2}$ $-(x_1 - x_3)^*(x_1 - 2^*x_2 + x_3)^*(x_3 - x_1 + 1)^*(x_3 - x_1 + 2^*x_1 + x_2 - 2^*x_1 + x_3 + 2^*x_2 + x_3 - 2^*x_2 + 1)$. $\frac{D_3(f) = \partial f}{\partial x_3}$ $-(x_1 - x_2)^*(x_2 - x_1 + 1)^*(x_1 + x_2 - 2^*x_3 - 1)^*(x_1 + x_2 - 2^*x_3 -$

so, the degree of $Sh(A_2)$ is $\{-1, 2, 2\}$. and hence the exponent vector of $Sh(A_2)$ is $\{0, 3, 3\}$. The partition of this arrangement is $P = \{P_1, P_2, P_3\}$ where

$$\{P_1 = \{\phi\}, P_2 = \{H_1, H_3, H_5\}, P_3 = \{H_2, H_4, H_6\}.$$

we find the $A_{x_i}, \forall x_i \in rank \ 2.$

 $A_{x_1} = \{H_1, H_3, H_5\}, A_{x_2} = \{H_1, H_4, H_6\}, A_{x_3} = \{H_2, H_3\},\$

$$A_{x_4} = \{H_2, H_5\}, \quad A_{x_5} = \{H_2, H_4, H_6\}, \quad A_{x_6} = \{H_3, H_6\}$$

Now, we compute the induced partition of $Sh(A_2)$, as follows:

$$\begin{array}{ll} P_1 \cap A_{x_i} = \{\phi\}, \, \forall i = 1, \dots, 6 \\ P_2 \cap A_{x_i} = \{x_1 = x_2 + 1 = x_3 + 1\}, & \forall i = 1, \dots, 6. \end{array}$$

$$P_3 \cap A_{x_i} = \{x_1 - 1 = x_2 = x_3 + 1\}, \quad \forall i = 1, \dots, 6$$

Notice that the induced partition of $Sh(A_2)$ has singleton block $\forall X \in L_A \setminus \{V\}$, then this

arrangement has a nice partition and hence by Th. (3.5) $Sh(A_2)$ is a hyperfactored arrangement.

Theorem 3.7:

Shi arrangement $Sh(A_3)$ is not hyperfactored. **proof:**

By using program (2) we found that $P_{1}(x) = 2f$

$$\frac{D_1(f) = \partial J}{\partial x_1}, D_2(f) = \frac{\partial J}{\partial x_2}, \frac{D_3(f) = \partial J}{\partial x_3}, D_4(f) = \frac{\partial J}{\partial x_4} \quad \text{of}$$

$$Sh(A_3):$$

$$D_1(f) = \frac{\partial f}{\partial x_1}$$

 $(x1 - x)^*(x1 - x)^*(x2 - x)^*(x2 - x)^*(x3 - x)$ $(x^{2} - x^{-} + 1)^{*}(x^{3} - x^{-} + 1)^{*}(x^{4} - x^{-} + 1)^{*}(x^{3} - x^{-} + 1)^$ $(x^{4} - x^{-} + 1)^{*}(x^{4} - x^{-} + 1) - (-1 - x^{-})^{*}(x^{1} - x^{-})^{*}(x^{-} - x^{-})^{*}(x^{-}$ $(x_1 - x_-)^*(x_2 - x_-)^*(x_2 - x_-)^*(x_3 - x_-)^*(x_2 - x_-)^*(x_$ $(x_{4} - x_{-} + 1)^{*}(x_{3} - x_{-} + 1)^{*}(x_{4} - x_{-} + 1)^$ -x-+1) - (-1 - x-)*(x1 - x-)*(x1 - x-)*(x2 - $(x_{2} - x_{-})^{*}(x_{3} - x_{-})^{*}(x_{2} - x_{-} + 1)^{*}(x_{3} - x_{-} + 1)^{*}(x_{3$ $1)^{*}(x_{3} - x_{-} + 1)^{*}(x_{4} - x_{-} + 1)^{*}(x_{4} - x_{-} + 1) - (-1 - 1)^{*}(x_{4} - x_{-} + 1)^{*}(x_$ x - *(x1 - x) *(x1 - x) *(x2 - x) *(x2 - x) *(x3 - x)x-)*(x3 - x - + 1)*(x4 - x - + 1)*(x3 - x - + 1)*(x4 - x - + 1)*x-+1 * (x4 - x-+1) + (x1 - x-) * (x1 - x-) * (x2 - x- $(x^{2} - x)^{*}(x^{3} - x)^{*}(x^{2} - x + 1)^{*}(x^{3} - x + 1)^{*}$ $1)^{*}(x4 - x - + 1)^{*}(x3 - x - + 1)^{*}(x4 - x - + 1)^{*}(x4$ x- + 1) + (x1 - x-)*(x1 - x-)*(x2 $(x_3 - x_{-})^*(x_2 - x_{-} + 1)^*(x_3 - x_{-} + 1)^*(x_4 - x_{-} +$ $1)^{*}(x_{3} - x_{-} + 1)^{*}(x_{4} - x_{-} + 1)^{*}(x_{4} - x_{-} + 1).$ $D_2(f) = \frac{\partial f}{\partial f}$

$$\begin{array}{l} & & & & & & \\ (x1 - x -)^*(x1 - x -)^*(x1 - x -)^*(x2 - x -)^*(x3 - x - \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

45

)*(x1 - x)*(x2 - x)*(x2 - x)*(x3 - x)*(x2 - x)+1)*(x4 - x - + 1)*(x4 - x - + 1)+(x4 - x - + 1)+(x1 - x)*(x2 - x)*(x2 - x)*(x3 - x)*(x2 - x - + 1)*(x3 - x - + 1)*(x4 - x - + 1)+(x1 - x)*(x1 - x)*(x1 - x)*(x1 - x)*(x2 - x - + 1)*(x3 - x - + 1)*(x4 - x - + 1)+(x1 - x)*(x1 - x)*(x1 - x)*(x2 - x)*(x3 - x - + 1)*(x4 - x - + 1)+(x1 - x)*(x1 - x - + 1)*(x4 - x - + 1)+(x1 - x)*(x1 - x - + 1)*(x4 - x - + 1)+(x1 - x)*(x1 - x - + 1)*(x4 - x - + 1)+(x1 - x)*(x1 - x - + 1)*(x4 - x - + 1)+(x1 - x -)*(x3 - x - + 1)*(x4 - x - + 1).

$$D_3(f) = \frac{\partial f}{\partial x_1}$$

 $(x1 - x)^*(x1 - x)^*(x1 - x)^*(x2 - x)^*(x2 - x)$ $(x^{2} - x^{-} + 1)^{*}(x^{3} - x^{-} + 1)^{*}(x^{4} - x^{-} + 1)^{*}(x^{3} - x^{-} + 1)^$ $(+ 1)^{*}(x4 - x - + 1)^{*}(x4 - x - + 1) - (-1 - x -)^{*}(x1 - x - -)^{*}(x1 - -)^{*}(x$ x-)*(x1 - x-)*(x2 - x-)*(x2 - x-)*(x3 - x-)*(x2 - x-)*(x3 - x-)*(x2 - x-)*(x3 - x-)*x- + 1)*(x3 - x- + 1)*(x4 - x- + 1)*(x3 - $1)^{*}(x4 - x - + 1) + (x1 - x -)^{*}(x1 - x -)^{*}(x1 - x -)^{*}(x2 - x -)^{*}(x2 - x -)^{*$ $(x^{2} - x^{-})^{*}(x^{2} - x^{-})^{*}(x^{2} - x^{-} + 1)^{*}(x^{3} - x^{-} + 1)^{*}(x^{3$ $1)^{*}(x4 - x - + 1)^{*}(x4 - x - + 1)^{*}(x4 - x - + 1) + (x1 - x - + 1)^{*}(x4 - x - + 1)^{*}(x4$ x-)*(x1 - x-)*(x1 - x-)*(x2 - x-)*(x2 - x-)*(x3 - x-)* $x-)*(x^2 - x - + 1)*(x^4 - x - + 1)*(x^3 - x - + 1)*(x^4 - x^2 - x^2)*(x^4 (x^{2} - x)^{*}(x^{3} - x)^{*}(x^{2} - x + 1)^{*}(x^{3} - x + 1)^{*}$ $1)^{*}(x4 - x - + 1)^{*}(x3 - x - + 1)^{*}(x4 - x - + 1)^{*}(x4$ x- + 1) - (-1 - x-)*(x1 - x-)*(x2 - x-)*(x2 - x-) $(x_3 - x_{-})^*(x_2 - x_{-} + 1)^*(x_3 - x_{-} + 1)^*(x_4 - x_{-} +$ 1)*(x3 - x - + 1)*(x4 - x - + 1)*(x4 - x - + 1).

$D_4(f) = \frac{\partial f}{\partial x_4}$

 $(x1 - x)^*(x1 - x)^*(x1 - x)^*(x2 - x)^*(x2 - x)$ $(x_3 - x_{-})^*(x_2 - x_{-} + 1)^*(x_3 - x_{-} + 1)^*(x_4 - x_{-} +$ $1)^{*}(x_{3} - x_{-} + 1)^{*}(x_{4} - x_{-} + 1) + (x_{1} - x_{-})^{*}(x_{1} - x_{-})^{$ $(x_1 - x_-)^*(x_2 - x_-)^*(x_2 - x_-)^*(x_3 - x_-)^*(x_2 - x_-)^*(x_$ $(x^{2} - x^{2} + 1)^{*}(x^{2} - x^{2} + 1)^{*}(x^{3} - x^{2} + 1)^{*}(x^{4} + 1)^{*$ -x-+1) - (-1 - x-)*(x1 - x-)*(x1 - x-)*(x2 - $(x^{2} - x)^{*}(x^{2} - x + 1)^{*}(x^{3} - x + 1)^{*}(x^{4} - x + 1)$ $1)^{*}(x_{3} - x_{-} + 1)^{*}(x_{4} - x_{-} + 1)^{*}(x_{4} - x_{-} + 1) + (x_{1} - x_{-} + 1)^{*}(x_{4} - x_{-}$ x-)*(x1 - x-)*(x1 - x-)*(x2 - x-)*(x2 - x-)*(x3 - x-)* $x-)*(x^2 - x^{-} + 1)*(x^3 - x^{-} + 1)*(x^3 - x^{-} + 1)*(x^4 - x^{-})*(x^4 - x^{-})*(x^{-}$ x-+1)*(x4 - x-+1) - (-1 - x-)*(x1 $(x_{2} - x_{-})^{*}(x_{3} - x_{-})^{*}(x_{2} - x_{-} + 1)^{*}(x_{3} - x_{-} + 1)^{*}(x_{3$ $1)^{*}(x4 - x - + 1)^{*}(x3 - x - + 1)^{*}(x4 - x - + 1)^{*}(x4$ x- + 1) - (-1 - x-)*(x1 - x-)*(x2 - x-)*(x2 - x-))*(x3 - x -)*(x2 - x - + 1)*(x3 - x - + 1)*(x4 - x - + $1)^{*}(x_{3} - x_{-} + 1)^{*}(x_{4} - x_{-} + 1)^{*}(x_{4} - x_{-} + 1).$

Therefore, the degree of $Sh(A_3)$ is $\{-1, 3, 3, 3\}$. and the exponent vector of $Sh(A_3)$ is $\{0, 4, 4, 4\}$ The partition of this arrangement is P = $\{P_1, P_2, P_3, P_4\}$ where:

 $P_1 = \{\phi\}, P_2 = \{H_1, H_2, H_3, H_4\}, P_3 = \{H_5, H_6, H_7, H_8\}, P_4 = \{H_9, H_{10}, H_{11}, H_{12}\}.$ The Arr View Couple 2 has been found in the

The Ax_i , $\forall x_i \in rank \ 2$ has been found in the following Table 2.

Table 2. The \mathcal{A}_{x_i} of $\mathcal{S}h(A_3)$		
$A_{x_1} = \{H_1, H_3, H_7\}$	$A_{x_{17}} = \{H_2, H_{11}\}$	
$A_{x_2} = \{H_1, H_4, H_8\}$	$A_{x_{18}} = \{H_2, H_{12}\}$	
$A_{x_3} = \{H_1, H_5, H_9\}$	$A_{x_{19}} = \{H_3, H_8\}$	
$A_{x_4} = \{H_1, H_6, H_9\}$	$A_{x_{20}} = \{H_3, H_{10}\}$	
$A_{x_5} = \{H_2, H_6, H_9\}$	$A_{x_{21}} = \{H_4, H_5\}$	
$A_{x_6} = \{H_3, H_5, H_{11}\}$	$A_{x_{22}} = \{H_4, H_9\}$	
$A_{x_7} = \{H_3, H_6, H_{12}\}$	$A_{x_{23}} = \{H_4, H_{10}\}$	
$A_{x_8} = \{H_4, H_6, H_{11}\}$	$A_{x_{24}} = \{H_5, H_8\}$	
$A_{x_9} = \{H_7, H_9, H_{11}\}$	$A_{x_{25}} = \{H_5, H_{10}\}$	
$A_{x_{10}} = \{H_2, H_7, H_{12}\}$	$A_{x_{26}} = \{H_5, H_{12}\}$	
$A_{x_{11}} = \{H_2, H_4, H_7\}$	$A_{x_{27}} = \{H_6, H_7\}$	
$A_{x_{12}} = \{H_8, H_{10}, H_{11}\}$	$A_{x_{28}} = \{H_6, H_8\}$	
$A_{x_{13}} = \{H_1, H_3, H_5, H_7, H_9, H_{11}\}$	$A_{x_{29}} = \{H_8, H_9\}$	
$A_{x_{14}} = \{H_2, H_3\}$	$A_{x_{30}} = \{H_9, H_{12}\}$	
$A_{x_{15}} = \{H_2, H_5\}$	$A_{x_{31}} = \{H_5, H_7\}$	
$A_{x_{16}} = \{H_2, H_{10}\}$	$A_{x_{32}} = \{H_1, H_{12}\}$	

Now, we compute the induced partition of $h(A_3)$, as follows:

$$\begin{split} P_1 \cap A_{x_i} &= \{\phi\}, \forall i = 1, \dots, 12 \\ P_2 \cap A_{x_i} &= \{H_1, H_2, H_3, H_4\}, \forall i = 1, \dots, 12 \\ P_3 \cap A_{x_i} &= \{H_5, H_6, H_7, H_8\}, \forall i = 1, \dots, 12 \\ P_4 \cap A_{x_i} &= \{H_9, H_{10}, H_{11}, H_{12}\}, \forall i = 1, \dots, 12 \\ \text{Notice that the induced partition of } Sh(A_3) \text{ has no singleton block } \forall X \in L_A \setminus \{V\}, \text{ then this arrangement has no nice partition therefore } Sh(A_3) \\ \text{ is not a hyperfactored arrangement.} \end{split}$$

Program 1.

syms x1 x2 x3 hp1=x1-x2 hp2=x1-x2-1 hp3=x1-x3 hp4=x1-x3-1 hp5=x2-x3 hp6=x2-x3-1 L=hp1*hp2*hp3*hp4*hp5*hp6 I1=diff(L,x1) I2=diff(L,x2) I3=diff(L,x3) I1=simplify(I1) I2=simplify(I2) I3=simplify(I3)

Program 2.

syms x1 x2 x3 x4 hp1=x1-x2hp2=x1-x2-1 hp3=x1-x3 hp4=x1-x3-1 hp5=x1-x3hp6=x1-x4-1 hp7=x2-x3hp8=x2-x3-1 hp9=x2-x4hp10=x2-x4-1 hp11=x3-x4 hp12=x3-x4-1 L=hp1*hp2*hp3*hp4*hp5*hp6*hp7*hp8*hp9*hp 10*hp11*hp12 I1=diff(L,x1)I2=diff(L,x2)I3=diff(L,x3)I4=diff(L,x4)I1=simplify(I1) I2=simplify(I2) I3=simplify(I3) I4=simplify(I4)

CONCLUSIONS

We found the degrees and the exponents of $Sh(A_{n-1})$ arrangement and we compute the induced partition of $Sh(A_2)$ and $Sh(A_3)$ we prove the shi arrangement is ahyperfactored arrangement when n=3 and not hyperfactored arrangement when n=4 arrangement.

ACKNOWLEDGEMENT

The authors would like to thank Mustansiriyah University at (<u>www.uomustansiriyah.edu.iq</u>) for supporting this research study"

REFERENCES

- Stanley, R. P. An introduction to hyperplane arrangements. Geometric combinatorics, 13(389-496), 24, 2004.
- [2] Shi, J. Y. The Kazhdan-Lusztig cells in certain affine Weyl groups. Lecture notes in Mathematics, 1179, 1-307, 1986.
- [3] Abebe, R. Counting regions in hyperplane arrangements. Harvard College Math Review, 5.
- [4] Rincón, F. A Labelling of the Faces in the Shi Arrangement. Rose-Hulman Undergraduate Mathematics Journal, 8(1), 7. 2007.
- [5] Denham, G. Hanlon and Stanley's conjecture and the Milnor fibre of a braid arrangement. Journal of Algebraic Combinatorics, 11(3), 227-240, 2000.
- [6] Rhoades, B., & Armstrong, D. The Shi arrangement and the Ish arrangement. Discrete Mathematics & Theoretical Computer Science, 2011.
- [7] Fishel, S. A survey of the Shi arrangement. In Recent Trends in Algebraic Combinatorics (pp. 75-113). Springer, Cham, 2019.
- [8] Athanasiadis, C. A. A class of labeled posets and the Shi arrangement of hyperplanes. Journal of combinatorial theory, Series A, 80(1), 158-162,1997.
- [9] Levear, D. A bijection for Shi arrangement faces,2019.
- [10]Steinberg, R. (1960). Invariants of finite reflection groups. Canadian Journal of Mathematics, 12, 616-618, 1960.

How to Cite

A. A. Al-Mujmaey and R. G. A. Al-Aleyawee, "Hyperfactord of Shi arrangement Sh(A2) and Sh(A3)", *Al-Mustansiriyah Journal of Science*, vol. 33, no. 3, pp. 43–47, 2022.

47

