Open Access

New Types of Separation Axioms via Wp-Open Sets

Waqas Battal Jubair, Haider Jebur Ali*

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, IRAQ. Correspondent contact: <u>drhaiderjebur@uomustansiriyah.edu.iq</u>

ArticleInfo	ABSTRACT
Received 09/03/2022	In this work, new kinds of separation axioms using w_p open sets, some results, properties, examples, and the relationship between these concepts have been given to support our work.
	KEYWORDS: w-open, pre-open, regular, and normal spaces
Accepted	الخلاصة
28/03/2022	في هذا العمل، نوع جديد من بديهيات الفصل باستخدام المجموعات المفتوحة، وقد تم اعطاء بعض النتائج، الخصائص، الأمثلة والعلاقة بين هذه المفاهيم لدعم عملنا.
Published	
25/09/2022	

INTRODUCTION

In our work the definitions of w_p -T_i,i=0, 1, 2, 3, 4 are defined by using w_p - open set. We also offer some notions by utilizing w_p - pen sets and studying some of their facts. Throughout this paper (x, τ) or X is always a topological space. The intersection of w_p closed sets containing A we call it w_p closer of A. the largest w_p open set contained in A we call it w_p interior of A. There are more researches about w-open set [1-5].

ω_P -OPEN SETS AND SOME RESULTS

Definition 1 [6, 7]: A set A taken from space X called preopen set if $A \subseteq int(cl(A))$.

The researchers in our introduction define w-open set as follows:

Definition 2: The set *A* taken from space X we call it w- open if we find open set U containing any point x in A such that U-A=countable.

Definition 3 [8]: A set A taken from space X, we call it w_p open if for every point x belongs to A we have a preopen set U containing x, in which U-A=countable.

So a subset F of space X is w_p closed if X-F is w_p open.

Remark 1: Every open set is w_p-open set but the converse maybe not true.

Example 1: In the indiscrete space (R, τ_{ind}) the set of whole rational numbers is w_p-open but not open

Lemma 1: A subset U of space X is ω_p -open if and only if every point in U is an ω_p -interior point. Proof:

Suppose U is ω_p -open, then it is ω_p -neighborhood to each of its points. So every point is an ω_p -interior point.

Conversely, since $U = \bigcup_{x \in U} \{x\}$ and every point has ω_p -open set V_x such that $x \in V_x \subseteq U$ then $U=\bigcup_{x \in U} \{V_x\}$ and the union of ω_p -open sets is ω_p open so U ω_p -open set.

Definition 4: *The space X* will be named:

- 1- $\omega_p T_0$ -space if for different elements x,,y at X, we find ω_p open set W in X containing x but not y or vice versa.
- 2- $\omega_p T_1$ -space if for different elements x, y in X, there are ω_p open sets W_1, W_2 in X such that $x \in W_1, y \notin W_1$ and $y \in W_2, x \notin W_2$.
- 3- $\omega_p T_2$ -space if for all different elements x, yin X, there are ω_p open sets have no mutual point W_1, W_2 in X such that $x \in W_1$ and $y \in W_2$.

36

Example 2: Let $X = \{1, 2, 3\}$ and $\tau = \{\emptyset, X, \{1\}, \{3\}, \{1, 3\}\}$, so (X, τ) is $\omega_p T_0$ -space and, $\omega_p T_1$ - $\omega_p T_2$ -space, but neither T_1 nor T_2 -space.

Remark 2:

1-If (X, τ) is T_i -space, that it is $\omega_p T_i$ -space where i=0, 1, 2.

2- If (X, τ) is $\omega_p T_2$ -space, then it is $\omega_p T_1$ and $\omega_p T_0$ -spaces.

Example 3:

- 1- The indiscrete space (Z, τ_{ind}) is $\omega_p T_0$ space, $\omega_p T_1$ and $\omega_p T_2$ -space but not T_0 , T_1 and T_2 -space.
- 2- The co-finite topological space (R, τ_{cof}) is $\omega_p T_0$ -space and $\omega_p T_1$ -space, but not $\omega_p T_2$ -space.

Proposition 1: Suppose Y be an open subspace of space X, if W is pre-open in X, then $W \cap Y$ is pre-open in Y.

Proof: Since W is pre-open in X, then $W \subseteq \overline{W}^{\circ}$ so

 $W \cap Y \subseteq \overline{W}^{\circ} \cap Y = (\overline{W}^{\circ} \cap Y)^{\circ Y} \subseteq (\overline{W} \cap Y)^{\circ Y} \subseteq (\overline{W} \cap Y)^{\circ Y}$ (since Y is open) $\subseteq (\overline{W} \cap \overline{Y})^{\circ Y} \cap Y^{\circ Y} = (\overline{W} \cap \overline{Y} \cap Y)^{\circ Y}$, therefore $W \cap \overline{Y} \subseteq (\overline{W} \cap \overline{Y}^{Y})^{\circ Y}$.

Proposition 2: If *W* is $\omega_p - open in$ a topological space(*X*, τ_x) and(*Y*, τ_Y) is a partial open set of *X*, *then* $W \cap Y$ *is* $\omega_p - open set in Y$,.

Proof: Set $x \in W \cap Y$, so $x \in W$ with $x \in Y$, hence there is pre – open G in X, with $x \in G$ and G-W be countable, but (G-W) $\cap Y \subseteq$ (G-W), thus $(G-W) \cap Y$ is countable, and (G-W) $\cap Y =$ (G $\cap Y$)-(W $\cap Y$) will become countable, where G $\cap Y$ is preopen set in Y (by proposition1), we get $W \cap Y$ is ω_p open set in Y.

Corollary1: If *M* is ω_p -closed in the *space* (*X*, μ) with (*Y*, μ_Y) is subspace from *X*, then $M \cap Y$ is ω_p closed set in *Y*.

Definition 6: A function f from space X into space Y we call it pre**open function when *image* of all preopen *set* at X is preopen set at Y.

Lemma1: If $f: (X, \tau_X) \to (Y, \tau_Y)$ is bijective pre-**open function, *then the* image of all ω_p open set at *X* is ω_p open set at *Y*.

Proof: If *H* is an ω_p open set at *X*, and $y \in f(H)$, so there is $x \in X$ so that f(x)=y (because f is bijective), since it is $y \in f(H)$, then $x=f^{-1}(y) \in$ $f^{-1}(f(H))=H(f)$ is one to one), hence $x \in H$ which is ω_p open, thus we have preopen set *W* at *X* where $x \in W$ and *W*-*H* will be countable, so f(W-H) be countable subset in *Y*, however f(W-H)=f(W)-f(H), since f(W) is preopen at *Y* (because of *f* is pre^{**}open function), with $x \in W$, so $f(x)=y \in f(W)$, therefore f(H) is ω_p open set in *Y*.

Proposition 3: A property of spaces which is $\omega_p T_i$ -space, i = 0, 1, 2 is open hereditary property.

Proof: Take *Y* is a subspace of $\omega_p T_0 space X$ and *x*, *y* as distinct points in *Y*, hence *x*, *y* are distinct points in *X* which is $\omega_p T_0$ -space, so there is ω_p open subset *W* in *X* such that $x \in W$, $y \notin W$. We have $W \cap Y$ is ω_p -open subset of *Y*(since *f* is bijective), (by lemma 1) with $x \in W \cap Y$, $y \notin W \cap Y$ (because $x \in W$ and $x \in Y$ but $y \notin W$), therefore *Y* is $\omega_p T_0$ -space, which means $\omega_p T_0$ -space is hereditary property.

Proposition 4: Set f is *function of X* into Y be homumorphism then whether X $\omega_p T_i$ -space then Y is $\omega_p T_i$, where i = 0, 1, 2.

Proof: To prove Y is $\omega_p T_0$ -space, whenever X is ωT_0 -space and y_1, y_2 are distinct points in Y, then there are distinct points x_1, x_2 in X with $f(x_1)=y_1$, $f(x_2)=y_2$ (since f is a bijective function), so there exists ω_p -open subset W of X with $x_1 \in W$ and $x_2 \notin W$ (because X is ωT_0 -space) there is open set G containing x with G-W=countable. So f(G-W)=f(G)-f(W) is countable. $f(G) \subseteq \underline{f(G)}$ then $f(G) = (f(G))^\circ \subseteq \underline{f(g)}^\circ$ then f(G) is preopen set so f(W) is ω_p open set $f(x_1)=y_1 \in f(W)$ and $f(x_2)=y_2 \notin f(W)$,

where f(W) will be ω_p open partial set of Y, therefore Y is $\omega_p T_0 space$.

By same method, we can prove the other part.

Proposition 5: A topological space (X, τ_X) is $\omega_p T_1$ -space if and only if any singleton subset $\{x\}$ of X is ω_p -closed subset of X.

Proof: Suppose any singleton subset $\{x\}$ of *X* is ω_p -closed subset of *X* for any $x \in X$, and let *x*, *y* be distinct points in *X*, so $\{x\}^c, \{y\}^c$ are ω_p -open sets containing *y*, *x* respectively, so *X* is $\omega_p T_1$ -space.

Conversely, let *X* be an $\omega_p T_1$ -space, to prove $\{x\}$ is ω_p -closed subset of *X*, that means to prove $\{x\}^c$ is ω_p open partial set from *X*. Let $y \in \{x\}^c$, so $y \neq x$ and there is ω_p open set *W* at *X* such that $y \in W, x \notin W$, so $y \in W \subseteq \{x\}^c$, thus $\{x\}^c$ is ω_p -open set, therefore $\{x\}$ is ω_p -closed, but *x* is arbitrary point in *X*, that means every singleton subset of *X* is ω -closed.

Proposition 6: A topological space (X, τ_X) is ωT_0 space iff $cl_{\omega_p}(\{x\}) \neq cl_{\omega_p}(\{y\})$ for each distinct points *x* and *y* in *X*.

Proof: Suppose $cl_{\omega_p}(\{x\}) \neq cl_{\omega_p}(\{y\})$ with different elements *x* and *y* in *X*, so there is at least one element exists in one of them and not in the other, say $a \in cl_{\omega_p}(\{x\})$, $a \notin cl_{\omega_p}(\{y\})$, and suppose $x \notin cl_{\omega_p}(\{y\})$, because if $x \in cl_{\omega_p}(\{y\})$ then $cl_{\omega_p}(\{x\}) \subseteq$

 $cl_{\omega_p}\left(cl_{\widehat{\omega}}^{\mu}(\{y\})\right)=cl_{\omega_p}(\{y\})$, then $a \in cl_{\omega_p}(\{x\}) \subseteq cl_{\omega_p}(\{y\})$ and that is a contradiction, therefore $x \in X$ - $cl_{\omega_p}(\{y\})$, now X- $cl_{\omega_p}(\{y\})$ is ω_p -open set containing x but not y, that implies X is $\omega_p T_0$ -space. Conversely, if X is $\omega_p T_0$ -space and x, y are distinct points in X, so there is ω_p -open set U of X with $x \in U$ and $y \notin U$, then X-U is ω_p -closed set contains y but not x, from definition of $cl_{\omega_p}(\{y\})$ we get, $cl_{\omega_p}(\{y\}) \subseteq X$ -U, which means $x \notin cl_{\omega_p}(\{y\})$ but $x \in cl_{\omega_p}(\{x\})$, so that $cl_{\omega_p}(\{x\})\neq cl_{\omega_p}(\{y\})$.

Definition 7: Any space X called :

- 1- ω_p regular space f or any point $x \in X$ and with M closed at X and $x \notin M$, there is no mutual points of ω_p -open sets W_1, W_2 in X at which $x \in$ W_1 and $M \subseteq W_2$.
- 2- ω_p^* -regular space if for any *point* $x \in X$ with all ω_p closed *subset* M of X with $x \notin M$, so we

have sets $W_1, W_2 \in \tau$, with $W_1 \cap W_2 = \emptyset$ in which $x \in W_1$ and $M \subseteq W_2$.

3- ω_p^{**} -regular space if for any *point* $x \in X$ with all ω_p closed subset M of X with $x \notin M$, so we have $\omega_p open$ sets W_1, W_2 in X, with $W_1 \cap$ $W_2 = \emptyset$ in which $x \in W_1$ and $M \subseteq W_2$.

Remark 3:

- 1) Regular space is ω_p regular but the couverse is not true.
- 2) Every ω_p^* regular space is ω_p -regular.
- 3) Every ω_p^* regular space is ω_p^{**} -regular.

Example 4:

- 1- X={1,2,3}, τ = {Ø,X,{1}}, we have τ^c = {X,Ø,{2,3}}.So X is not regular but it is ω_p -regular.
- 2- Let X= {1, 2, 3}, τ = indiscrete so (X, τ_{ind}) is regular, ω_p^{**} -regular, and ω_p -regular space, but not ω_p^{*} -regular.

Example 5: The co-finite supra topological space (Z, τ_{cof}) is ω_p -regular and ω_p^{**} -regular space while it is neither ω_p^{*} -regular, nor a regular.

Theorem 1: A space (X, τ) be ω_p^* regular space *if f* for all point *x* in *X* with all ω_p neighborhood *K* to *x*, having neighborhood *W* in *X* of *x* with *cl* (*W*) \subseteq *K*.

Proof: If *X* be ω_p^* -regular space, let $x \in X$ and *K* be a ω_p -neighborhood to *x*, so there exists ω_p open set *E* at *X* and $x \in E \subseteq K$, hence E^c is ω_p -closed set at *X* and $x \notin E^c$, but *X* is ω_p^* regular, thus we have two different sets open *W*, *B* at *X* with $x \in W, E^c \subseteq B$, then *W* is neighborhood to *x* and $W \subseteq B^c$, where B^c is closed set in *X*, therefore $cl(W) \subseteq cl(B^c) = B^c$, which means $cl^{\mu}(W) \subseteq B^c \ldots$ (1), and since $E^c \subseteq B$ then $B^c \subseteq E^{cc} = E \subseteq K \Rightarrow cl(W) \subseteq K$;

Conversely, Set $x \in X$ and M is ω_p closed set at X with $x \notin M$, so $x \in M^c$ which is ω_p -open set in X, then M^c is ω_p neighborhood to x, so we have neighborhood W at X to x such that $cl(W) \subseteq M^c$ (from, hypothesis), since W is the neighborhood

to x, then there will be open set W_1 in X with $x \in W_1 \subseteq W$, from $cl(W) \subseteq M^c$ we get $M \subseteq (cl(W))^c$, thus $(cl(W))^c$ is open subset of X and since $W \cap W^c = \emptyset$, then $W_1 \cap (cl(W))^c = \emptyset$ (because $W_1 \subseteq W$ and because $W \subseteq cl(W)$, so $(cl^{\mu}(W))^c \subseteq W^c$), so for all point x in X with all ω_p closed set M in X where $x \notin M$ there is disjoint open sets W_1 , $(cl(W))^c$ such that $x \in W_1$ and $M \subseteq (cl(W))^c$, that implies X is ω_p^* regular.

Proposition 7:

Every open subspace of w_{p} regular space is w_{p} regular.

Proof:

If *Y* be subspace of an ω_p regular space *X*, take *M*

as a closed set at Y and q as any point at Y such that $q \notin M$, so there is closed set M' in X such *that* M equal $M' \cap Y$, it obvios $q \notin M$, because if opposite, we get $q \in M' \cap Y$ that equal M which is a contradiction, so $q \notin M$, but X is ω_p

regular, so that there are two ω_p open sets W, Bin X with $q \in W$, $M' \subseteq B$, with $W \cap B = \emptyset$, thus $W \cap Y, B \cap Y$ are ω_p open in Y, in which $q \in$ $W \cap Y$ and $M' \cap Y = M \subseteq B \cap Y$ and $(W \cap Y) \cap (B \cap Y) = (W \cap B) \cap Y = \emptyset \cap Y$ that equal \emptyset ,

so Y is ω_p regular space,

Lemma 2:

Let $f: X \to Y$ be a homeomorphism function if A is preopen in X, then f(A) is preopen in Y.

Proof:

Set *A* is preopen in X then $A \subseteq \text{int} (cl(A))$ so by take f for two sides then $f(A) \subseteq f(\text{int} (cl (A)))$(1) but is continuous, then $f(cl (A)) \subseteq$ clf(A) by take interior for two sides we get $int(f(cl (A)) \subseteq int(cl (A)))$ (2) so by (1) and (2) we have $f(A) \subseteq int(cl (A))$ that is f(A) is preopen in Y.

Lemma 3:

Let f from X into Y be homeomorphism then if G is preopen and $G \subseteq Y$, then $f^{-1}(G)$ is also preopen in X.

Proof:

Since G is pre-open at Y so $G \subseteq \underline{G}^{\circ}$ then by take f^{-1} for both sides we have $f^{-1}(G) \subseteq$

$$f^{-1}(\underline{G}^{\circ}) = \underline{f^{-1}(G)}^{\circ} \text{ so } f^{-1}(G) \subseteq \underline{f^{-1}(G)}^{\circ}$$

so $f^{-1}(G)$ is preopen in X.

Lemma 4:

Let f from X into Y be homeomorphism function if A be ω_p open and $A \subseteq X$, then f(A) ω_p open and f(A) $\subseteq Y$.

Proof:

Set A be ω_p open at X to prove f(A) is ω_p open at Y, , let $y \in f(A)$ then, $x = f^{-1}(y) \in f^{-1}(f(A)) = A$ but A is ω_p open set then there exists preopen set G in X containing x such that G - A = countable so f(G-A) = countable since f is bijective but f(G-A) =f(G) - f(A) but f(G) is also preopen set by above lemma, then f(G) - f(A) = countable, then f(A) is also ω_p open set.

Lemma 5:

Let f be a homeomorphism function then the inverse image of ω_p open set is also ω_p open.

Proposition 8:

- 1- The property of space X being ω_p regular is *topological property*.
- 2- The *property* of space X we call it ω_p^* regular is *topological property*.
- 3- A property of space X we call it ω_p^{**} regular is *topological property*.

Proof:

1- Suppose (X, τ_X) is ω_p regular, with f is homeomorphism function from a topological space Xinto a topological spaceY, letM be closed in *Y* and *q* is arbitrary point in *Y* in which $q \notin M$, so there is point $p \in X$ with f(p)=q, we $get f^{-1}(M)$ is closed at X (because f is continuous function) and $f^{-1}(q) = p \notin f^{-1}(M)$, but X is an ω_p regular space, so there are two ω_p open sets W, B in Xwhere $p \in W$, $f^{-1}(M) \subseteq B$, with $W \cap B = \emptyset$, so with $f(f^{-1}(M)) = M \subseteq$ $f(p) = q \in f(W)$ f(B) where f(W), f(B) are ω_p open sets in Y (by lemma **),

likewise $f(W) \cap f(B) = f(W \cap B) = f(\emptyset) = \emptyset$,

hence *Y* is ω_p regular, therefore the property space X being ω_p regular is topological property.

- 2- If f : X → Y is a homeomorphism function and X be ω_p^* regular space to prove Y is also ω_p^* regular, let $q \in M$ be ω_p closed set in Y and $q \notin$ M then $p=f^{-1}(M)$ is ω_p closed in X by (lemma 4) and Xis ω_p^* regular space, then we have two open sets H, K with $p \in H$ and $f^{-1}(M) \subseteq K$ and $H \cap K = \emptyset$, $q = f(p) \in f(H)$ and $M = ff^{-1}(M)$ $\subseteq f(K)$ also f (H) and f (K) will be also open sets *sincef is* homeomrphism and f (H) \cap f (K) = f (H \cap K) = f(\emptyset) = \emptyset then Y is ω_p^* regular space.
- 3- Prove by the same context.

Theorem 2:

A topological space (X, τ_X) is ω_p regular *iff* for every $x \in X$ and for all open set U in X contained x, there is ω_p open V in Xwith $x \in V \subseteq cl_{\omega_n}(V) \subseteq U$.

Proof:

Suppose X is ω_p regular space, set $x \in X$ and U is an open in X such that $x \in U$, so U^c be closed in X that not containing x, but X is ω_p regular space, so there are two ω_p open sets V, W with $x \in$ $V, U^c \subseteq W$ and $V \cap W = \emptyset$, so $V \subseteq W^c$, thus $cl_{\omega_p}(V) \subseteq cl_{\omega_p}(W^c) = W^c \dots$ (1), and since $U^c \subseteq$ W, then $W^c \subseteq U \dots$ (2), from (1) and (2) we get, $x \in V \subseteq cl_{\omega_p}(V) \subseteq W^c \subseteq U$, which means $x \in$ $V \subseteq cl_{\omega_p}(V) \subseteq U$.

Conversely, let *M* be closed in*X* and *x* is arbitrary point in *X* with $x \notin M$, so M^c is open in *X* containing *x*, then from a hypothesis there is ω_p open set *V* in *X* in which $x \in V \subseteq cl_{\omega_p}(V) \subseteq$ M^c , since $cl_{\omega_p}(V) \subseteq M^c$, hence $M^{c^c} = M \subseteq$ $(cl_{\omega_p}(V))^c$ (since $cl_{\omega_p}(V)$ is ω_p closed set, so $(cl_{\widehat{\omega}}^{\mu}(V))^c$ is ω_p open set), and since $V \subseteq$ $cl_{\widehat{\omega}}^{\mu}(V)$, hence $V \cap (cl_{\omega_p}(V))^c = \emptyset$. Therefore, there are two ω_p open sets *V*, $(cl_{\widehat{\omega}}^{\mu}(V))^c$ in *X* such that $x \in V, M \subseteq cl_{\omega_p}(V))^c$, and $V \cap (cl_{\omega_p}(V))^c = \emptyset$, then *X* is ω_p regular space.

Definition 8:

A topological space (X, τ) we call it:-1- $\omega_p T_3$ space if it be ω_p regular T_1 -space. 2- $\omega_p^* T_3$ -space if it is ω_p^* regular T_1 -space. 3- $\omega_p^{**}T_3$ -space if it is ω_p^{**} regular space and supra T_1 -space.

Example 6:

The discrete topological space (R, τ_D) is ω_p, ω_p^* and $\omega_n^{**}T_3$ -space.

Remark 4:

- 1- Every $\omega_p T_3$ -space is ω_p regular.
- 2- ω_p regular space need not be T_2 -space (R, τ_{ind}) .
- 3- $\omega_p T_1$ -space need not be ω_p regular(R, τ_{cof}).

Example 7:

 (R,τ_{ind}) is ω_p regular and $\omega_p T_2$ -space but neither ω_p^* regular nor $\omega_p T_3$ -space.

Definition 9 [4]:

If X is space we called X to be Excluded space, if $\tau_{Ex} = \{U: U \subseteq X, x_o \notin U, \text{ for some } x_o \in X \} \cup \{X\}$. Excluded space is neither T₁ nor regular space.

Definition 10 [4]:

Set X be space we called X is Included space if $\tau_{In} = \{ U: U \subseteq X, x_{\circ} \in U, \text{ for some } x_{\circ} \in X \} \cup \{ \emptyset \}$. Included space is T₁ but not regular so it is not T₃.

Example 8:

To show that (\mathbb{R}, τ_{In}) is $\omega_p \mathbb{T}_3$ since it is \mathbb{T}_1 space now let $\{2\} \subseteq X$ (since $1 \notin \{2\}$ i.e. $\mathbb{R} - \{2\} \subseteq_{open} \mathbb{R}$ so $\{2\} = (\mathbb{R} - \{2\})^C \subseteq_{closed} \mathbb{R}$) and $3 \in \mathbb{R}$ with $3 \notin$ $\{2\}$, since $\{1,3\} \subseteq_{open} \mathbb{R}$ so it is ω_p open, T.p. $\{2\}$ is ω_p open, $2 \in \{2\}$, $\exists \{2\} \subseteq \mathbb{R}$ containing $2, \{2\}$ $= \{2\} \{2\}^\circ = \emptyset \Longrightarrow \{2\} \not\subseteq \{2\}^\circ$ i.e. ω_p open. The following scheme is helpful.

Proposition 9:

For all $\omega_p T_3$ space be $\omega_p T_2$ -space.

Proof:

Suppose (X, τ_x) is a $\omega_p T_3$ space, let x, y any different points in X, we have X is T_1 space $(from \ definition \ of \ \omega_p T_3$ space), so $\{x\}$ is closed and $y \notin \{x\}$, since X is ω_p regular so there are ω_p open sets W, B with $\{x\} \subseteq W, y \in B$ also $W \cap B$ equal \emptyset , since $x \in \{x\} \subseteq w$, therefore X is $\omega_p T_2$ space.

40

Proposition 10:

- 1- Every $\omega_p T_3$ -space is $\omega_p T_1$ -space.
- 2-Every $\omega_p * T_3$ -space is $\omega_p T_2$ -space.
- 3- Every $\omega_p^{**}T_3$ -space is $\omega_p T_2$ -space.

Proof:

- 1- As in proposition (9).
- 2- Set x, $y \in X$ and x, y are not equal, since X is $\omega_p^* T_3$ space $\Rightarrow X$ is $T_1 \Rightarrow [x]$ is closed in X, x $\in [x]$, [x] is closed, $y \notin [x]$ so [x] is ω_p closed but X is ω_p^* reguler so then exists two open sets W, B such that $[x] \subseteq W$, $y \in B$ but every open is ω_p open so we have W,B is two ω_p open sets and $x \in [x] \subseteq W$, therefor X is $\omega_p T_2$ -space.
- 3- Similarly to the above proposition.

Definition 11:

A space X we call it ω_p normal if for every closed two sets F_1 , F_2 in X then there exist two different ω_p open sets H, K containing F_1 , F_2 respectively.

Definition 12:

A space X we call it ω_p^* normal if for any two ω_p closed sets F₁, F₂, we have two different open sets H, K containing F₁, F₂ respectively.

Definition 13:

A space X we called it ω_p^{**} normal if for any two ω_p closed sets F₁, F₂in X, we have two different ω_p open set H, K containing F₁ and F₂ respectively.

Remarks 5:

- 1- Every normal space is ω_p normal but the converse is not true.
- 2- Every ω_p^* normal is ω_p normal.
- 3- Every ω_p^* normal is ω_p^{**} normal.
- 4- Every ω_p^{**} normal space is ω_p normal but the converse not true.

Proposition 11:

A space X is ω_p normal if to each closed set F with an open set U containing F there exist an ω_p open set V, containing F so that $F \subseteq V \subseteq \omega_p cl(V) \subseteq U$.

Theorem 3:

A space X is ω_p normal *iff for all* closed set F with any *set G containing F*, there is an ω_p open set V with $F \subset V \subset \underline{V} \subset G$.

Proof:

Set F is any closed set and G is an open set with $F \subset G$, so G^c is closed set and $F \cap G^c = \emptyset$. But X is an ω_p normal, then we have ω_p open sets U, V with $G^c \subset U$, $F \subset V$ and $U \cap V = \emptyset$ so that $V \subset U^c$ so $\omega_p cl$ (V) C $\omega_p cl$ (U^c) = U^c....(1), since U^c is ω_p closed set, but $G^c \subset U$, then U^c $\subset G$ (2) by (1) and (2) we get $\omega_p cl$ (V) $\subset G$ therefore there exists ω_p open set V such that $F \subset V$ and $\omega_p cl$ (V) $\subset G$.

Conversely. Let L and M be *closed subsets* of X with $L \cap M = \emptyset$ so that $L \subset M^c$, so by hypothesis there is an ω_p open set V with $L \subset V$ and $\omega_p cl(V)$ $\subset M^c$ so $M \subset (\omega_p cl(V))^c$ also $V \cap (\omega_p cl(V))^c = \emptyset$ then V with $(\omega_p cl(V))^c$ are two different ω_p open sets, with $L \subset V$, $M \subset (\omega_p cl(V))^c$, therefore, X is ω_p normal space

CONCLUSIONS

In this paper, we introduce new types of separation axioms via Wp-Open sets. In addition to this, we get many results and the most important of which are:

- 1. If W is $\omega_p open$ in a topological space (X, τ_x) and (Y, τ_Y) is a partial set of X, then $W \cap Y$ is $\omega_p - open$ set in Y,.
- 2. A property of spaces which is $\omega_p T_i$ -space, i=0, 1, 2 is hereditary property.
- 3. A space (X, τ) be ω_p^* regular space *iff* for all point x in X with all ω_p neighborhood K to x, having neighborhood W in X of x with $cl(W) \subseteq K$.
- 4. A topological space (X, τ_X) is ω_p regular *if f* for everyx ∈ X and for all open set U inX containedx, there is ω_p openV in X with x ∈ V⊆cl_{ω_p}(V)⊆U.
- 5. A space X is ω_p normal *iff for all* closed set F with any *set G containing F*, there is an ω_p open set V with $F \subset V \subset \underline{V} \subset G$.

ACKNOWLEDGMENT

We wish to express our sincere thanks to the Mustansiriyah University, College of Science, Department of Mathematics for supporting this research.

REFERENCES

- G. S. Ashaea and Y. Y. Yousif. "Weak and Strong Forms of □-Perfect Mappings." Iraqi Journal of Science (2020), 45-55. <u>https://doi.org/10.24996/ijs.2020.SI.1.7</u>
- G. S. Ashaea, and Y. Y. Yousif. "Some types of mappings in bitopological spaces." Baghdad Science Journal 18(1), (2021),149-155. https://doi.org/10.21123/bsj.2021.18.1.0149
- [3] Humadi, N. K., & Ali, H. J. (2020). Certain types of functions by using supra [^]ω-open sets. *Italian Journal of Pure and Applied Mathematics*, 44, 589-601.
- [4] N. Rajesh, on weakly w-closed sets in topological spaces, Math. Maced 3, (2005), 15-24.
- [5] A. Samer, and W. Zareer. "Omega open sets in generalized topological spaces." J. Nonlinear Sci. Appl 9(5), (2016), 3010-3017. <u>https://doi.org/10.22436/jnsa.009.05.93</u>
- [6] S. Jafari, "on certain types of notions via preopen sets", Tamkang Journal of Mathematics, 37(4), 2006, 391-398.

https://doi.org/10.5556/j.tkjm.37.2006.152

- [7] H. Maki, K. C. Rao, and A. Nagoor Gani. "On generalizing semi-open sets and preopen sets." Pure and Applied Mathematika Sciences, 49(1/2), (1999): 17-30.
- [8] Hussain, K. A., Noman, L. M., & Ali, H. J. On supra Cωp-Lindelöf spaces.

How to Cite

W. B. Jubair and H. J. Ali, "New Types of Separation Axioms Via Wp-Open Sets", *Al-Mustansiriyah Journal of Science*, vol. 33, no. 3, pp. 36–42, Sep. 2022.

