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 الخلاصة

ي هذا العمل، نوع جديد من بديهيات الفصل باستخدام المجموعات المفتوحة، وقد تم اعطاء بعض النتائج، الخصائص، 
 
ف

 الأمثلة والعلاقة بي   هذه المفاهيم لدعم عملنا. 

INTRODUCTION 
In our work the definitions of wp-Ti ,i=0, 1, 2, 3, 4 

are defined by using wp- open set. We also offer 

some notions by utilizing wp- pen sets and studying 

some of their facts. Throughout this paper (𝑥, 𝜏) or 

X is always a topological space. The intersection of 

wp closed sets containing A we call it wp closer of 

A. the largest wp open set contained in A we call it 

wp interior of A. There are more researches about 

w-open set [1-5]. 

 

𝜔𝑃-OPEN SETS AND SOME RESULTS 

Definition 1 [6, 7]: A set A taken from space X 

called preopen set if A ⊆ int(cl(A)). 

The researchers in our introduction define w-open 

set as follows: 

Definition 2:  The set 𝐴 taken from space X we call 

it w- open if we find open set U containing any 

point x in A such that U-A=countable. 

Definition 3 [8]: A set A taken from space X, we 

call it wp open if for every point x belongs to A we 

have a preopen set U containing x, in which                

U-A=countable. 

So a subset F of space X is wp closed if X-F is wp 

open. 

Remark 1: Every open set is wp-open set but the 

converse maybe not true. 

Example 1: In the indiscrete space (R, τind) the set 

of whole rational numbers is wp-open but not open 

 

Lemma 1: A subset U of space X is 𝜔𝑝-open if and 

only if every point in U is an  𝜔𝑝-interior point. 

Proof: 

 Suppose U is  𝜔𝑝-open,then it is  𝜔𝑝-neighborhood 

to each of its points. So every point is an  𝜔𝑝-

interior point. 

Conversely, since U = ∪𝑥∈𝑈 {x} and every point 

has 𝜔𝑝-open set 𝑉𝑥 such that 𝑥 ∈ 𝑉𝑥 ⊆ 𝑈 then 

U=∪𝑥∈𝑈{𝑉𝑥} and the union of  𝜔𝑝-open sets is  𝜔𝑝-

open so U  𝜔𝑝-open set. 

Definition 4: 𝑇ℎ𝑒 𝑠𝑝𝑎𝑐𝑒 𝑋 will be named:                                                          

1- 𝜔𝑝𝑇0 −space if for different elements x,,y at X, 

we find 𝜔𝑝open set 𝑊 in 𝑋 containing 𝑥 but 

not 𝑦 or vice versa. 

2- 𝜔𝑝𝑇1-space if for different elements 𝑥, 𝑦 in 𝑋, 

there are 𝜔𝑝 open sets 𝑊1, 𝑊2 in 𝑋 such that 𝑥 ∈

𝑊1, 𝑦 ∉ 𝑊1 and 𝑦 ∈ 𝑊2, 𝑥 ∉ 𝑊2. 
3- 𝜔𝑝𝑇2 −space if for all different elements 𝑥, 𝑦 

in 𝑋, there are 𝜔𝑝open sets have no mutual 

point 𝑊1, 𝑊2 in 𝑋 such that 𝑥 ∈ 𝑊1 and 𝑦 ∈ 𝑊2. 
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Example 2: Let 𝑋= {1, 2, 3} and 𝜏= {∅, 𝑋, {1}, 

{3}, {1, 3}}, so (𝑋, 𝜏) is 𝜔𝑝𝑇0-space and, 𝜔𝑝𝑇1- 

𝜔𝑝𝑇2-space, but neither 𝑇1 𝑛𝑜𝑟 𝑇2-space.  

 

Remark 2: 

 1-If (𝑋, 𝜏) is  𝑇𝑖-space, that it is 𝜔𝑝𝑇𝑖-space where 

𝑖=0, 1, 2. 

2- If (𝑋, 𝜏) is 𝜔𝑝𝑇2-space, then it is 𝜔𝑝𝑇1 and 𝜔𝑝𝑇0-

spaces.        

Example 3: 

1- The indiscrete space (𝑍, 𝜏𝑖𝑛𝑑) is 𝜔𝑝𝑇0-

space, 𝜔𝑝𝑇1 and 𝜔𝑝𝑇2-space but not 

𝑇0 , 𝑇1and 𝑇2-space.                               

2- The co-finite topological space (𝑅, 𝜏𝑐𝑜𝑓) is 

𝜔𝑝𝑇0-space and 𝜔𝑝𝑇1-space, but not 𝜔𝑝𝑇2-

space. 

Proposition 1: Suppose Y be an open subspace of 

space X, if W is pre-open in X, then W∩ 𝑌 is pre-

open in Y. 

Proof: Since W is pre-open in X, then 


WW  so 

YYY YWYWYWYWYW 
)()()( 

(𝑠𝑖𝑛𝑐𝑒 𝑌 𝑖𝑠 𝑜𝑝𝑒𝑛) 
YYY YYWYYW  )()(   

, therefore YY

YWYW )(  . 

Proposition 2: If 𝑊is 𝜔𝑝 − 𝑜𝑝𝑒𝑛 𝑖𝑛 a topological 

space( 𝑋, 𝜏𝑥) and( 𝑌, 𝜏𝑌) is a partial open set of 𝑋, 

𝑡ℎ𝑒𝑛 𝑊⋂𝑌 𝑖𝑠 𝜔𝑝 − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑖𝑛 𝑌,. 

Proof: Set 𝑥 ∈ 𝑊⋂𝑌, 𝑠𝑜 𝑥 ∈ 𝑊 with 𝑥 ∈ 𝑌, 

ℎ𝑒𝑛𝑐𝑒 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑝𝑟𝑒 − 𝑜𝑝𝑒𝑛 𝐺 in X, with 𝑥 ∈ 𝐺 

and 𝐺-𝑊 be 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒, but (G-W)⋂Y⊆(G-W), 

thus (𝐺-𝑊 )⋂𝑌 is countable, and (G-

W)⋂Y=(G⋂Y)-(W⋂Y) will become countable, 

where G⋂Y is preopen set in Y (by proposition1), 

we get 𝑊⋂𝑌 is 𝜔𝑝open  set in 𝑌. 

Corollary1: If 𝑀 is 𝜔𝑝-closed in 

the 𝑠𝑝𝑎𝑐𝑒 (𝑋, 𝜇) 𝑤𝑖𝑡ℎ (𝑌, 𝜇𝑌) is subspace from 𝑋, 

then 𝑀⋂𝑌 is 𝜔𝑝closed set in 𝑌. 

Definition 6: A function f from space X into space 

Y we call it pre**open function when 𝑖𝑚𝑎𝑔𝑒 of all 

preopen 𝑠𝑒𝑡 at X is preopen set at Y.                                            

Lemma1: If 𝑓: (𝑋, 𝜏𝑋) ⟶ (𝑌, 𝜏𝑌) is bijective pre-

**open function, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 image of all 𝜔𝑝open set 

at 𝑋 is 𝜔𝑝open set at 𝑌. 

Proof: If 𝐻 is an 𝜔𝑝open 𝑠𝑒𝑡 𝑎𝑡 𝑋, and 𝑦 ∈ 𝑓(𝐻), 

𝑠𝑜 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑥 ∈ 𝑋 so that 𝑓(𝑥)=𝑦 (because 𝑓𝑖𝑠 

bijective), since it is 𝑦 ∈ 𝑓(𝐻), then 𝑥=𝑓−1(𝑦) ∈
𝑓−1(𝑓(𝐻))=𝐻 (𝑓 is one to one), hence 𝑥 ∈ 𝐻 

which is 𝜔𝑝open, thus we have preopen set 𝑊 𝑎𝑡 𝑋 

where 𝑥 ∈ 𝑊 and 𝑊-𝐻 will be countable, so 𝑓(𝑊-

𝐻) be 𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 in 𝑌, however 𝑓(𝑊-

𝐻)=𝑓(𝑊)-𝑓(𝐻), since 𝑓(𝑊) is preopen 𝑎𝑡 𝑌 

(because of 𝑓 𝑖𝑠 pre**open function), with 𝑥 ∈ 𝑊, 

so 𝑓(𝑥)=𝑦 ∈ 𝑓(𝑊), therefore 𝑓(𝐻 ) 𝑖𝑠 𝜔𝑝open set 

in 𝑌. 

Proposition 3: A property of spaces which is 𝜔𝑝𝑇𝑖-

space, 𝑖= 0, 1, 2 is open hereditary property.                                    

Proof: Take 𝑌 is a subspace of  𝜔𝑝𝑇0𝑠𝑝𝑎𝑐𝑒 𝑋 and 

𝑥, 𝑦 as distinct points in 𝑌, hence 𝑥, 𝑦 are distinct 

points in 𝑋 which is 𝜔𝑝𝑇0-space, so there is 𝜔𝑝open 

subset 𝑊 in 𝑋 such that 𝑥 ∈ 𝑊, 𝑦 ∉ 𝑊. We have 

𝑊⋂𝑌 is 𝜔𝑝-open subset of 

𝑌(𝑠𝑖𝑛𝑐𝑒 𝑓 𝑖𝑠 𝑏𝑖𝑗𝑒𝑐𝑡𝑖𝑣𝑒), ( 𝑏𝑦 𝑙𝑒𝑚𝑚𝑎 1) with 𝑥 ∈
𝑊⋂𝑌, 𝑦 ∉ 𝑊⋂𝑌 (because 𝑥 ∈ 𝑊 and 𝑥 ∈ 𝑌 

but 𝑦 ∉ 𝑊), therefore 𝑌 is 𝜔𝑝𝑇0-space, which 

means 𝜔𝑝𝑇0-space is hereditary property. 

Proposition 4: Set f is 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋 into Y be 

homumorphism then whether X 𝜔𝑝𝑇𝑖-space then Y 

is 𝜔𝑝𝑇𝑖, where 𝑖 = 0, 1, 2.  

Proof: To prove Y is 𝜔𝑝𝑇0-space, whenever 𝑋 is 

𝜔𝑇0-space and 𝑦1, 𝑦2 are distinct points in 𝑌, then 

there are distinct points 𝑥1, 𝑥2 in 𝑋 with 𝑓(𝑥1)=𝑦1, 

𝑓(𝑥2)=𝑦2 (since 𝑓 is a bijective function), so there 

exists 𝜔𝑝-open subset 𝑊 of 𝑋 with 𝑥1 ∈ 𝑊 and 

𝑥2 ∉ 𝑊 (because 𝑋 is 𝜔𝑇0-space) there is open set 

G containing x with G-W=countable. So f(G– W)= 

f(G) – f(W) is countable. f(G) ⊆ 𝑓(𝐺) then f(G) = 

(𝑓(𝐺))∘ ⊆ 𝑓(𝑔)∘ then 𝑓(𝐺)𝑖𝑠 preopen set 

𝑠𝑜 𝑓(𝑊) 𝑖𝑠 𝜔𝑝open set  𝑓(𝑥1)=𝑦1 ∈ 𝑓(𝑊) 

and 𝑓(𝑥2)=𝑦2 ∉ 𝑓(𝑊), 
where 𝑓(𝑊) 𝑤𝑖𝑙𝑙 𝑏𝑒 𝜔𝑝open partial set of 𝑌, 

therefore 𝑌 is 𝜔𝑝𝑇0𝑠𝑝𝑎𝑐𝑒.  

𝐵𝑦 𝑠𝑎𝑚𝑒 𝑚𝑒𝑡ℎ𝑜𝑑, we can prove the other part. 

Proposition 5: A topological space (𝑋, 𝜏𝑋) is 

𝜔𝑝𝑇1-space if and only if any singleton subset {𝑥} 

of  𝑋 is 𝜔𝑝-closed subset of 𝑋.    
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Proof:  Suppose any singleton subset {𝑥} of 

𝑋 𝑖𝑠 𝜔𝑝-closed subset of 𝑋 for any 𝑥 ∈ 𝑋, and 

let 𝑥, 𝑦 be distinct points in 𝑋, so {𝑥}𝑐, {𝑦}𝑐 are 𝜔𝑝-

open sets containing 𝑦, 𝑥 respectively, so 𝑋 is 

𝜔𝑝𝑇1-space.  

Conversely, let 𝑋 be an 𝜔𝑝𝑇1-space, to prove {𝑥} is 

𝜔𝑝-closed subset of 𝑋, that means to prove {𝑥}𝑐 is 

𝜔𝑝open partial set from 𝑋. Let 𝑦 ∈ {𝑥}𝑐, so 𝑦 ≠ 𝑥  

and there is 𝜔𝑝open set 𝑊 at 𝑋 such that 𝑦 ∈

𝑊, 𝑥 ∉ 𝑊, so 𝑦 ∈ 𝑊 ⊆ {𝑥}𝑐, thus {𝑥}𝑐 is 𝜔𝑝-open 

set, therefore {𝑥} is 𝜔𝑝-closed, but 𝑥 is arbitrary 

point in 𝑋, that means every singleton subset of  𝑋 

is 𝜔-closed. 

Proposition 6: A topological space (𝑋, 𝜏𝑋) is 

𝜔𝑇0space iff 𝑐𝑙𝜔𝑝
({𝑥}) ≠ 𝑐𝑙𝜔𝑝

({𝑦}) for each 

distinct points 𝑥 𝑎𝑛𝑑 𝑦 in 𝑋. 
Proof:  Suppose 𝑐𝑙𝜔𝑝

({𝑥})≠𝑐𝑙𝜔𝑝
({𝑦}) with 

different elements 𝑥 𝑎𝑛𝑑 𝑦 in 𝑋, so there is at least 

one element exists in one of them and not in the 

other, say 𝑎 ∈ 𝑐𝑙𝜔𝑝
({𝑥}), 𝑎 ∉ 𝑐𝑙𝜔𝑝

({𝑦}), and 

suppose 𝑥 ∉ 𝑐𝑙𝜔𝑝
({𝑦}), because if 𝑥 ∈ 𝑐𝑙𝜔𝑝

 ({𝑦}) 

then 𝑐𝑙𝜔𝑝
({𝑥}) ⊆

𝑐𝑙𝜔𝑝
(𝑐𝑙�̂�

𝜇 ({𝑦}))=𝑐𝑙𝜔𝑝
({𝑦}), then𝑎 ∈ 𝑐𝑙𝜔𝑝

({𝑥}) ⊆

 𝑐𝑙𝜔𝑝
({𝑦})and that is a contradiction, therefore 𝑥 ∈

𝑋-𝑐𝑙𝜔𝑝
({𝑦}), now 𝑋-𝑐𝑙𝜔𝑝

({𝑦}) is 𝜔𝑝-open set 

containing 𝑥 but not 𝑦, that implies 𝑋 is 𝜔𝑝𝑇0-

space. Conversely, if 𝑋 is 𝜔𝑝𝑇0-space and 𝑥,𝑦 are 

distinct points in 𝑋, so there is 𝜔𝑝-open set 𝑈 of 𝑋 

with 𝑥 ∈ 𝑈 and 𝑦 ∉ 𝑈, then 𝑋-𝑈 is 𝜔𝑝-closed set 

contains 𝑦 but not 𝑥, from definition of 𝑐𝑙𝜔𝑝
({𝑦}) 

we get, 𝑐𝑙𝜔𝑝
({𝑦}) ⊆ 𝑋-𝑈, which means 𝑥 ∉

𝑐𝑙𝜔𝑝
({𝑦}) but 𝑥 ∈ 𝑐𝑙𝜔𝑝

 ({𝑥}), so that 

𝑐𝑙𝜔𝑝
({𝑥})≠𝑐𝑙𝜔𝑝

({𝑦}). 

Definition 7:  𝐴𝑛𝑦 𝑠𝑝𝑎𝑐𝑒 𝑋 𝑐𝑎𝑙𝑙𝑒𝑑 : 

1- 𝜔𝑝regular space 𝑓𝑜𝑟 any 𝑝𝑜𝑖𝑛𝑡 𝑥 ∈ 𝑋 and with 

M closed at 𝑋 and 𝑥 ∉ 𝑀, there is no mutual 

points of 𝜔𝑝-open sets 𝑊1, 𝑊2 in 𝑋 at which 𝑥 ∈

𝑊1 and 𝑀 ⊆ 𝑊2. 

2- 𝜔𝑝
∗-regular space if for any 𝑝𝑜𝑖𝑛𝑡 𝑥 ∈ 𝑋 with 

all 𝜔𝑝closed  𝑠𝑢𝑏𝑠𝑒𝑡 𝑀 of 𝑋 with 𝑥 ∉ 𝑀, so we 

have sets 𝑊1, 𝑊2 ∈ 𝜏, with 𝑊1 ∩ 𝑊2 = ∅ in 

which 𝑥 ∈ 𝑊1 and 𝑀 ⊆ 𝑊2. 

3- 𝜔𝑝
∗∗-regular space if for any 𝑝𝑜𝑖𝑛𝑡 𝑥 ∈ 𝑋 with 

all 𝜔𝑝closed subset 𝑀 𝑜𝑓 𝑋 with 𝑥 ∉ 𝑀, so we 

have 𝜔𝑝𝑜𝑝𝑒𝑛 sets 𝑊1, 𝑊2 𝑖𝑛 𝑋, 𝑤𝑖𝑡ℎ 𝑊1 ∩

𝑊2 = ∅ in which 𝑥 ∈ 𝑊1 and 𝑀 ⊆ 𝑊2. 

Remark 3: 

1) Regular space is 𝜔𝑝regular but the couverse is 

not true. 

2) Every 𝜔𝑝
∗- regular space is 𝜔𝑝-regular. 

3) Every 𝜔𝑝
∗- regular space is 𝜔𝑝

∗∗-regular. 

Example 4: 

1- X={1,2,3}, 𝜏= {∅ ,X,{1}} , we have 𝜏𝑐= 

{X,∅,{2,3}}.So X is not regular but it is 𝜔𝑝-

regular. 

2- Let 𝑋= {1, 2, 3}, 𝜏 = indiscrete so (𝑋, 𝜏𝑖𝑛𝑑  ) is 

regular, 𝜔𝑝
∗∗-regular, and 𝜔𝑝-regular space, but 

not  𝜔𝑝
∗-regular. 

Example 5: The co-finite supra topological 

space(𝑍, 𝜏𝑐𝑜𝑓) is 𝜔𝑝-regular and 𝜔𝑝
∗∗-regular 

space while it is neither 𝜔𝑝
∗-regular, nor a regular. 

Theorem 1:  A space (𝑋, 𝜏) be 𝜔𝑝
∗regular 

space 𝑖𝑓𝑓 for all point 𝑥 in 𝑋 with 

all 𝜔𝑝neighborhood 𝐾 𝑡𝑜 𝑥, having neighborhood 

𝑊 in 𝑋 of 𝑥 with 𝑐𝑙 (𝑊) ⊆ 𝐾. 

Proof: If 𝑋 be 𝜔𝑝
∗-regular space, let 𝑥 ∈ 𝑋 and 𝐾 

be a 𝜔𝑝-neighborhood  to 𝑥, so there exists 𝜔𝑝open  

set 𝐸 at 𝑋 and 𝑥 ∈ 𝐸 ⊆ 𝐾, hence 𝐸𝑐 is 𝜔𝑝-closed  

set at 𝑋 and 𝑥 ∉ 𝐸𝑐, but  𝑋 is 𝜔𝑝
∗regular, thus we 

ℎ𝑎𝑣𝑒 𝑡𝑤𝑜 different sets open 𝑊, 𝐵 at 𝑋 with 𝑥 ∈
𝑊, 𝐸𝑐 ⊆ 𝐵, then 𝑊 is neighborhood to 𝑥 and 𝑊 ⊆
𝐵𝑐, where 𝐵𝑐 is closed set in 𝑋, therefore 𝑐𝑙 (𝑊)⊆ 
𝑐𝑙 (𝐵𝑐)= 𝐵𝑐, which means 𝑐𝑙𝜇 (𝑊) ⊆ 𝐵𝑐…. (1), 

and since 𝐸𝑐 ⊆ 𝐵 then 𝐵𝑐 ⊆ 𝐸𝑐𝑐
=𝐸 ⊆ 𝐾…..(2). 

From (1) & (2) we have, 𝑐𝑙 (𝑊) ⊆ 𝐵𝑐 ⊆ 𝐸 ⊆ 𝐾 ⇒
𝑐𝑙 (𝑊) ⊆ 𝐾; 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦, Set 𝑥 ∈ 𝑋 and  𝑀 is 𝜔𝑝closed set at 𝑋 

with 𝑥 ∉ 𝑀, so 𝑥 ∈ 𝑀𝑐 which is 𝜔𝑝-open  set in 𝑋, 

then 𝑀𝑐 is 𝜔𝑝neighborhood to 𝑥, so we have 

neighborhood 𝑊 at 𝑋 to 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐𝑙 (𝑊) ⊆
𝑀𝑐(from,,hypothesis), since 𝑊 is the neighborhood 
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to 𝑥, then there 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑜𝑝𝑒𝑛 set 𝑊1 in 𝑋 with 𝑥 ∈
𝑊1 ⊆ 𝑊, from 𝑐𝑙 (𝑊) ⊆ 𝑀𝑐 we get 𝑀 ⊆

(𝑐𝑙 (𝑊))
𝑐
, thus (𝑐𝑙(𝑊))

𝑐
 is open subset of 𝑋 and 

since 𝑊⋂𝑊𝑐=∅, then 𝑊1⋂(𝑐𝑙 (𝑊))
𝑐
=∅ (because 

𝑊1 ⊆ 𝑊 and because 𝑊 ⊆ 𝑐𝑙 (𝑊), so 

(𝑐𝑙𝜇(𝑊))
𝑐

⊆ 𝑊𝑐), 𝑠𝑜 𝑓𝑜𝑟 𝑎𝑙𝑙 point 𝑥 in 𝑋 with 

all 𝜔𝑝closed set 𝑀 in 𝑋 𝑤ℎ𝑒𝑟𝑒 𝑥 ∉ 𝑀 there 

is 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑜𝑝𝑒𝑛 sets 𝑊1, (𝑐𝑙 (𝑊))
𝑐
 such that 𝑥 ∈

𝑊1 and 𝑀 ⊆ (𝑐𝑙 (𝑊))𝑐, that implies 𝑋 is 

𝜔𝑝
∗regular. 

Proposition 7: 
Every open subspace of wp regular space is wp 

regular. 

Proof:  

If 𝑌 be subspace of an p regular space 𝑋, take 𝑀 

as a closed  set at 𝑌 and   𝑞 as any point at 𝑌 such 

that q∉M, so there is closed  set 𝑀 ́ in 𝑋 

such 𝑡ℎ𝑎𝑡 𝑀 equal 𝑀 ́⋂𝑌, it obvios 𝑞 ∉ �́�, 

because if opposite, we get q∈M ́⋂Y that equal M 

which is a contradiction, so 𝑞 ∉ �́�, but 𝑋 is p

regular, so that there are 𝑡𝑤𝑜 p  𝑜𝑝𝑒𝑛 𝑠𝑒𝑡𝑠 𝑊, 𝐵 

in 𝑋 with 𝑞 ∈ 𝑊  ,  M ́⊆B, 𝑤𝑖𝑡ℎ 𝑊⋂𝐵=∅, thus 

𝑊⋂𝑌,B⋂Y are p  open  in 𝑌, 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑞 ∈

𝑊⋂𝑌 and M ́⋂Y=M⊆B⋂Y and 

(𝑊⋂𝑌)⋂(𝐵⋂𝑌)= (𝑊⋂𝐵)⋂𝑌 =∅⋂Y that equal ∅, 

so 𝑌 is p  regular  space, 

Lemma 2: 

Let f: X → Y be a homeomorphism function if  A 

is preopen in X , then f(A) is preopen in Y. 

Proof: 

Set 𝐴 𝑖𝑠 preopen in X then A⊆ int (𝑐𝑙(A)) so by 

take f for two sides then 𝑓(𝐴)  ⊆ f(int (𝑐𝑙 (A)) 

…..(1) but 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 , then𝑓 (𝑐𝑙 (A)) ⊆
𝑐𝑙𝑓(𝐴) by take interior for two sides we get 

𝑖𝑛𝑡(𝑓 (𝑐𝑙 (𝐴)) ⊆ 𝑖𝑛𝑡 (𝑐𝑙 (A)) ……(2) so by (1) 

and (2) we have f(A) ⊆ 𝑖𝑛𝑡 (𝑐𝑙 (𝐴)) that is f(A) is 

preopen in Y. 

Lemma 3: 

Let f from X into Y be homeomorphism then if G 

is preopen and G ⊆Y, then 𝑓−1(G) is also preopen 

in X. 

Proof: 

Since G is pre-open at Y so G ⊆ 𝐺∘ then by take 

𝑓−1 for both sides we have 𝑓−1(G) ⊆

 𝑓−1(𝐺∘)=𝑓−1 (𝐺)∘so 𝑓−1(G)⊆ 𝑓−1 (𝐺)∘                                                  

so 𝑓−1(G) is preopen in X. 

Lemma 4: 

Let f from X into Y be 

ℎ𝑜𝑚𝑒𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 if A be 𝜔𝑝 open and 

A ⊆ 𝑋 ,then f(A) 𝜔𝑝open and f(A) ⊆  𝑌. 
 

Proof: 

Set A be 𝜔𝑝open at X to prove f(A)is 𝜔𝑝open at 𝑌 

, let 𝑦 ∈ f(A) then , x = 𝑓−1(y)  ∈  𝑓−1(f(A)) = A 

but A is 𝜔𝑝 open set then there exists preopen set G 

in X containing x such that G – A = countable so 

f(G-A) = countable since f is bijective but f(G-A) = 

f(G) – f(A) but f(G) is also preopen set by above 

lemma , then f(G) – f(A) = countable , then f(A) is 

also 𝜔𝑝  open set . 

Lemma 5: 

Let f be a homeomorphism function then the 

inverse image of 𝜔𝑝open set is also 𝜔𝑝open. 

Proposition 8: 

1- The property of space X being 𝜔𝑝regular is 

topological property. 

2- The 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 of space X we call it 𝜔𝑝
∗regular 

is topological property. 

3- A 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 of 𝑠𝑝𝑎𝑐𝑒 𝑋 we call it 𝜔𝑝
∗∗regular 

is topological property. 

Proof:  

1- Suppose (𝑋, 𝜏𝑋) is 𝜔𝑝regular, with 𝑓 is 

ℎ𝑜𝑚𝑒𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 from a topological 

space 𝑋into a topological space𝑌, let𝑀 be closed 

in𝑌 and 𝑞 is arbitrary point in𝑌 in which 𝑞 ∉ 𝑀 , 

so there is point𝑝 ∈ 𝑋 with𝑓(𝑝)=𝑞, we 

get𝑓−1 (𝑀) is closed at 𝑋 

(𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) and 

𝑓−1(𝑞) = 𝑝 ∉ 𝑓−1(𝑀), but 𝑋 is an 𝜔𝑝regular  

space, so there are two 𝜔𝑝open  sets 𝑊, 𝐵 in 𝑋 

where 𝑝 ∈ 𝑊, 𝑓−1(𝑀) ⊆ 𝐵, with𝑊⋂𝐵=∅, so 

𝑓(𝑝) = 𝑞 ∈ 𝑓(𝑊) with𝑓(𝑓−1(𝑀)) = 𝑀 ⊆

𝑓(𝐵) where 𝑓(𝑊), 𝑓(𝐵) are 𝜔𝑝open  sets in𝑌 

(𝑏𝑦  𝑙𝑒𝑚𝑚𝑎 ∗∗), 

likewise 𝑓(𝑊)⋂𝑓(𝐵)=𝑓(𝑊⋂𝐵)=𝑓(∅)=∅, 

hence𝑌 is 𝜔𝑝regular, therefore the property 

space X being 𝜔𝑝regular  is topological 

property. 
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2- If f : X → Y is a homeomorphism function and 

X be 𝜔𝑝
∗  regular space to prove Y is also 𝜔𝑝

∗  

regular, let 𝑞 ∈ M be 𝜔𝑝 closed set in Y and 𝑞 ∉ 

M then p=𝑓−1(M) is 𝜔𝑝closed in X by (lemma 

4) and Xis𝜔𝑝
∗  regular space, then we have two 

open sets H, K with p ∈ H and 𝑓−1(M) ⊆ K and 

H ⋂ K = ∅ , 𝑞 =f (p) ∈ f(H) and M = 𝑓𝑓−1(M) 

⊆ f (K) also f (H) and f (K) will be also open sets 

𝑠𝑖𝑛𝑐𝑒𝑓 𝑖𝑠  homeomrphism and f (H) ∩ f (K) = f 

(H ∩ K) = f( ∅ ) = ∅  then Y is 𝜔𝑝
∗  regular space. 

3- Prove by the same context. 

Theorem 2: 

  A topological space (𝑋, 𝜏𝑋) is 𝜔𝑝regular  𝑖𝑓𝑓 for 

every 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 open set 

𝑈 in 𝑋 contained 𝑥, there is 𝜔𝑝open 𝑉 in 𝑋 

with 𝑥 ∈ 𝑉⊆𝑐𝑙𝜔𝑝
(𝑉)⊆𝑈. 

Proof: 

   Suppose 𝑋 is 𝜔𝑝regular space, set 𝑥 ∈ 𝑋and 𝑈 is 

an open in 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∈ 𝑈, so𝑈𝑐 be closed 

in 𝑋 𝑡ℎ𝑎𝑡 𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥, but 𝑋 is 𝜔𝑝regular 

space, so there are two 𝜔𝑝open sets 𝑉, 𝑊 with 𝑥 ∈

𝑉, 𝑈𝑐 ⊆ 𝑊 and 𝑉⋂𝑊=∅, so 𝑉 ⊆ 𝑊𝑐, thus 

𝑐𝑙𝜔𝑝
(𝑉)⊆ 𝑐𝑙𝜔𝑝

(𝑊𝑐)= 𝑊𝑐 … (1), and since 𝑈𝑐 ⊆

𝑊, then 𝑊𝑐 ⊆ 𝑈… (2), from (1) and (2) we get, 

𝑥 ∈ 𝑉 ⊆ 𝑐𝑙𝜔𝑝
(𝑉) ⊆ 𝑊𝑐 ⊆ 𝑈, which means 𝑥 ∈

𝑉 ⊆ 𝑐𝑙𝜔𝑝
(𝑉) ⊆ 𝑈. 

Conversely, let 𝑀 be closed in𝑋 and 𝑥 is arbitrary 

point in 𝑋 with 𝑥 ∉ 𝑀, so 𝑀𝑐 is open 

in 𝑋 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥, then from a hypothesis 𝑡ℎ𝑒𝑟𝑒 

is 𝜔𝑝open set 𝑉 in 𝑋 in which 𝑥 ∈ 𝑉 ⊆ 𝑐𝑙𝜔𝑝
(𝑉) ⊆

𝑀𝑐, since 𝑐𝑙𝜔𝑝
(𝑉)⊆ 𝑀𝑐, hence 𝑀𝑐𝑐

= 𝑀⊆ 

(𝑐𝑙𝜔𝑝
(𝑉))𝑐 (since 𝑐𝑙𝜔𝑝

(𝑉) is 𝜔𝑝closed set, 

so (𝑐𝑙�̂�
𝜇 (𝑉))𝑐 is 𝜔𝑝open set), and since 𝑉 ⊆

𝑐𝑙�̂�
𝜇

 (𝑉), hence 𝑉⋂(𝑐𝑙𝜔𝑝
(𝑉))𝑐=∅. Therefore, there 

are two 𝜔𝑝open sets 𝑉, (𝑐𝑙�̂�
𝜇

(𝑉))𝑐 in 𝑋 such that 

𝑥 ∈ 𝑉, 𝑀 ⊆ 𝑐𝑙𝜔𝑝
(𝑉))𝑐, and 𝑉⋂ (𝑐𝑙𝜔𝑝

 (𝑉))𝑐=∅, 

then 𝑋 is 𝜔𝑝regular space.      

Definition 8: 

   A topological space (𝑋, 𝜏) we call it:-  

1- 𝜔𝑝𝑇3space if it be 𝜔𝑝regular 𝑇1-space. 

2- 𝜔𝑝
∗𝑇3-space if it is 𝜔𝑝

∗regular 𝑇1-space. 

3- 𝜔𝑝
∗∗𝑇3-space if it is 𝜔𝑝

∗∗regular space and supra 

𝑇1-space. 

Example 6: 

The discrete topological space(𝑅, 𝜏𝐷) is 𝜔𝑝, 𝜔𝑝
∗ 

and 𝜔𝑝
∗∗𝑇3-space. 

Remark 4: 

1- Every 𝜔𝑝𝑇3-space is 𝜔𝑝 regular. 

2- 𝜔𝑝regular space need not be 𝑇2-space 

(𝑅, 𝜏𝑖𝑛𝑑). 

3- 𝜔𝑝𝑇1-space need not be 𝜔𝑝 regular(𝑅, 𝜏𝑐𝑜𝑓). 

Example 7: 

(𝑅,𝜏𝑖𝑛𝑑) is 𝜔𝑝regular and 𝜔𝑝𝑇2-space but neither 

𝜔𝑝
∗regular nor 𝜔𝑝𝑇3-space. 

Definition 9 [4]: 

If X is space we called X to be Excluded space, if 

𝜏𝐸𝑥={U: U ⊆ X , 𝑥∘ ∉ U , for some 𝑥∘ ∈ X } ∪ {X}. 

Excluded space is neither T1 nor regular space. 

Definition 10 [4]: 

Set X be space we called X is Included space if 

𝜏𝐼𝑛={U: U ⊆ X , 𝑥∘ ∈ U , for  some 𝑥∘ ∈ X} ∪ {∅}. 

Included space is T1 but not regular so it is not T3. 

Example 8: 

To show that (R,𝜏𝐼𝑛) is 𝜔𝑝T3 since it is T1 space 

now let {2} ⊆ X (since 1 ∉ {2} i.e. R-{2} ⊆𝑜𝑝𝑒𝑛 R 

so {2} = ( R-{2})𝐶 ⊆𝑐𝑙𝑜𝑠𝑒𝑑 R ) and 3 ∈ R with 3 ∉ 

{2} , since {1,3} ⊆𝑜𝑝𝑒𝑛 R so it is 𝜔𝑝open , T.p. {2} 

is 𝜔𝑝open , 2 ∈ {2} , ∃ {2} ⊆ R containing 2 , {2} 

= {2}  {2}∘ = ∅ ⟹ {2} ⊈ {2}° i.e. 𝜔𝑝open. 

The following scheme is helpful. 

Proposition 9: 

For all 𝜔𝑝𝑇3space be 𝜔𝑝𝑇2-space. 

 

Proof: 

   Suppose(𝑋, 𝜏𝑥) is a 𝜔𝑝𝑇3space, let 𝑥, 𝑦  any 

different points in 𝑋, 𝑤𝑒 ℎ𝑎𝑣𝑒𝑋 is 𝑇1space 

(𝑓𝑟𝑜𝑚 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓𝜔𝑝𝑇3space), so {𝑥} is closed 

and 𝑦∉{𝑥}, since 𝑋 is 𝜔𝑝regular so there are 

𝜔𝑝open sets 𝑊, 𝐵 with {𝑥}⊆𝑊, 𝑦∈𝐵 also 𝑊⋂𝐵 

equal ∅, since 𝑥 𝜖 {𝑥} ⊆ 𝑤, therefore 𝑋 is 𝜔𝑝𝑇2-

space. 
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Proposition 10: 

1- Every 𝜔𝑝𝑇3-space is 𝜔𝑝𝑇1-space. 

2-Every 𝜔𝑝
∗𝑇3-space is 𝜔𝑝𝑇2-space. 

3- Every 𝜔𝑝
∗∗𝑇3-space is 𝜔𝑝𝑇2-space. 

Proof: 
1- As in proposition (9). 

2- Set x, y∈ X and x , y are not equal, since X is 

𝜔𝑝 
∗ 𝑇3space ⟹ X is 𝑇1 ⟹  [x] is closed in X , x 

∈ [x] , [x] is closed , y ∉ [x] so [x] is 𝜔𝑝 closed 

but X is 𝜔𝑝
∗reguler so then exists two open sets 

W, B such that [x] ⊆ W, y ∈ B but every open is 

𝜔𝑝open so we have W,B is two 𝜔𝑝open sets and 

x ∈ [x] ⊆ W, therefor X is 𝜔𝑝𝑇2-space. 

3- Similarly to the above proposition. 

Definition 11: 

A space X we call it 𝜔𝑝normal if for every closed 

two sets 𝐹1 , 𝐹2 in X then there exist two 

different 𝜔𝑝open sets H, K containing F1 , F2 

respectively. 

Definition 12: 

A space X we call it 𝜔𝑝
∗normal if for any two 

𝜔𝑝closed sets F1, F2, we have two different open 

sets H, K containing F1, F2 respectively.  

Definition 13:  

A space X we called it 𝜔𝑝
∗∗normal if for any two 

𝜔𝑝closed sets F1, F2in X, we have two 

different 𝜔𝑝open set H, K containing F1 and F2 

respectively. 

Remarks 5: 

1- Every normal space is 𝜔𝑝normal but the 

converse is not true. 

2- Every 𝜔𝑝
∗normal is 𝜔𝑝normal. 

3- Every 𝜔𝑝
∗normal is 𝜔𝑝

∗∗normal. 

4- Every 𝜔𝑝
∗∗normal space is 𝜔𝑝normal but the 

converse not true. 

Proposition 11: 

A space X is  𝜔𝑝normal if to each closed set F with 

an open set U containing F there exist an  𝜔𝑝open 

set V, containing F so that F ⊆ V ⊆  𝜔𝑝𝑐𝑙(V) ⊆ U. 

 

 

Theorem 3: 

A space X is  𝜔𝑝normal 𝑖𝑓𝑓 𝑓𝑜𝑟 𝑎𝑙𝑙 closed set F 

with any  𝑠𝑒𝑡 𝐺 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐹 , there is an 𝜔𝑝open 

set V with F ⊂ V ⊂  𝑉 ⊂ G. 

Proof: 

Set F is any closed set and G is an open set with F⊂ 

G, so 𝐺𝑐is closed set and F ∩ 𝐺𝑐= ∅. But X is 

an 𝜔𝑝normal, then we have 𝜔𝑝open sets U, V 

with 𝐺𝑐 ⊂ U , F ⊂ V and U ∩ V = ∅ so thatV⊂ Uc 

so  𝜔𝑝𝑐𝑙 (V) C  𝜔𝑝𝑐𝑙 (Uc) = Uc…..(1) , since Uc is 

 𝜔𝑝closed set , but 𝐺𝑐 ⊂ U , then Uc ⊂ G …...(2) by 

(1) and (2) we get  𝜔𝑝𝑐𝑙 (V) ⊂ G therefore there 

exists  𝜔𝑝open set V such that F ⊂ V and  𝜔𝑝𝑐𝑙 (V) 

⊂ G . 

Conversely. Let L and M be 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 of X 

with L ∩ M = ∅ so that L ⊂ Mc , so by hypothesis 

there is an 𝜔𝑝open set V with L ⊂ V and  𝜔𝑝𝑐𝑙 (V) 

⊂ Mc so M ⊂ ( 𝜔𝑝𝑐𝑙(V))c also V ∩ ( 𝜔𝑝𝑐𝑙(V))c = ∅ 

then V with ( 𝜔𝑝𝑐𝑙(V))c are two different 𝜔𝑝open 

sets, with L ⊂ V, M ⊂ ( 𝜔𝑝𝑐𝑙 (V))c, therefore, X is 

 𝜔𝑝normal space  

CONCLUSIONS 

In this paper, we introduce new types of separation 

axioms via Wp-Open sets. In addition to this, we 

get many results and the most important of which 

are: 

1. If 𝑊is 𝜔𝑝 − 𝑜𝑝𝑒𝑛 𝑖𝑛 a topological space( 𝑋, 𝜏𝑥) 

and( 𝑌, 𝜏𝑌) is a partial set of 𝑋, 

𝑡ℎ𝑒𝑛 𝑊⋂𝑌 𝑖𝑠 𝜔𝑝 − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑖𝑛 𝑌,. 

2. A property of spaces which is 𝜔𝑝𝑇𝑖-space, 𝑖= 0, 

1, 2 is hereditary property.   

3. A space (𝑋, 𝜏) be 𝜔𝑝
∗regular space 𝑖𝑓𝑓 for all 

point 𝑥 in𝑋 with all 𝜔𝑝neighborhood 𝐾 𝑡𝑜 𝑥, 

having neighborhood 𝑊 in 𝑋 of 𝑥 with 

𝑐𝑙 (𝑊) ⊆ 𝐾. 

4. A topological space (𝑋, 𝜏𝑋) is 𝜔𝑝regular  𝑖𝑓𝑓 for 

every𝑥 ∈ 𝑋𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 open set 

𝑈 in𝑋 contained𝑥, there is 𝜔𝑝open𝑉 in 𝑋 

with 𝑥 ∈ 𝑉⊆𝑐𝑙𝜔𝑝
(𝑉)⊆𝑈. 

5. A space X is  𝜔𝑝normal 𝑖𝑓𝑓 𝑓𝑜𝑟 𝑎𝑙𝑙 closed set F 

with any  𝑠𝑒𝑡 𝐺 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐹 , there is 

an 𝜔𝑝open set V with F ⊂ V ⊂  𝑉 ⊂ G. 
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