New Types of Separation Axioms via Wp-Open Sets

Waqas Battal Jubair, Haider Jebur Ali*

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, IRAQ.
Correspondent contact: drhaiderjebur@uomustansiriyah.edu.iq

ABSTRACT
In this work, new kinds of separation axioms using w_p open sets, some results, properties, examples, and the relationship between these concepts have been given to support our work.

KEYWORDS: w-open, pre-open, regular, and normal spaces

INTRODUCTION
In our work the definitions of w_p-T_i, $i=0, 1, 2, 3, 4$ are defined by using w_p-open set. We also offer some notions by utilizing w_p-open sets and studying some of their facts. Throughout this paper (X, τ) or X is always a topological space. The intersection of w_p closed sets containing A we call it w_p closer of A. the largest w_p open set contained in A we call it w_p interior of A. There are more researches about w-open set [1-5].

w_p-OPEN SETS AND SOME RESULTS

Definition 1 [6, 7]: A set A taken from space X called preopen set if $A \subseteq \text{int} (\text{cl}(A))$.

The researchers in our introduction define w-open set as follows:

Definition 2: The set A taken from space X we call it w-open if we find open set U containing any point x in A such that U-$A=\text{countable}$.

Definition 3 [8]: A set A taken from space X, we call it w_p open if for every point x belongs to A we have a preopen set U containing x, in which U-$A=\text{countable}$.

So a subset F of space X is w_p closed if X-F is w_p open.

Remark 1: Every open set is w_p-open set but the converse maybe not true.

Example 1: In the indiscrete space (R, τ_{ind}) the set of whole rational numbers is w_p-open but not open

Lemma 1: A subset U of space X is ω_p-open if and only if every point in U is an ω_p-interior point.

Proof: Suppose U is ω_p-open, then it is ω_p-neighborhood to each of its points. So every point is an ω_p-interior point. Conversely, since $U = \bigcup_{x \in U} \{x\}$ and every point has ω_p-open set V_x such that $x \in V_x \subseteq U$ then $U = \bigcup_{x \in U} \{x\}$ and the union of ω_p-open sets is ω_p-open so U is ω_p-open set.

Definition 4: The space X will be named:
1- $\omega_p T_0$ –space if for different elements x, y at X, we find ω_p open set W in X containing x but not y or vice versa.
2- $\omega_p T_1$ –space if for different elements x, y in X, there are ω_p open sets W_1, W_2 in X such that $x \in W_1, y \notin W_1$ and $y \in W_2, x \notin W_2$.
3- $\omega_p T_2$ –space if for all different elements x, y in X, there are ω_p open sets have no mutual point W_1, W_2 in X such that $x \in W_1$ and $y \in W_2$.
Example 2: Let $X=\{1, 2, 3\}$ and $\tau=\{\emptyset, X, \{1\}, \{3\}, \{1, 3\}\}$, so (X, τ) is ω_pT_0-space and, ω_pT_1-ω_pT_2-space, but neither T_1 nor T_2-space.

Remark 2:
1-If (X, τ) is T_1-space, that it is ω_pT_1-space where $i=0, 1, 2$.
2- If (X, τ) is ω_pT_2-space, then it is ω_pT_1 and ω_pT_0-spaces.

Example 3:
1- The indiscrete space (Z, τ_{ind}) is ω_pT_0-space, ω_pT_1 and ω_pT_2-space but not T_0, T_1 and T_2-space.
2- The co-finite topological space (R, τ_{cof}) is ω_pT_0-space and ω_pT_1-space, but not ω_pT_2-space.

Proposition 1: Suppose Y be an open subspace of space X, if W is pre-open in X, then $W \cap Y$ is pre-open in Y.

Proof: Since W is pre-open in X, then $W \subseteq \overline{W}$ so $W \cap Y \subseteq \overline{W} \cap Y = (\overline{W} \cap Y)^\gamma \subseteq (W \cap Y)^\gamma \subseteq (W \cap Y)^\gamma$ (since Y is open)

$\subseteq (W \cap Y)^\gamma \cap Y^\gamma = (W \cap Y \cap Y)^\gamma$

therefore $W \cap Y \subseteq (W \cap Y)^\gamma$.

Proposition 2: If W is ω_p-open in a topological space (X, τ_X) and (Y, τ_Y) is a partial open set of X, then $W \cap Y$ is ω_p-open set in Y.

Proof: Set $x \in W \cap Y$, so $x \in W$ with $x \in Y$, hence there is pre-open G in X, with $x \in G$ and $G-W$ be countable, but $(G-W) \cap Y \subseteq (G-W) \cap Y$ is countable, and $(G-W) \cap Y = (G \cap Y) - (W \cap Y)$ will become countable, where $G \cap Y$ is pre-open set in Y (by proposition 1), we get $W \cap Y$ is ω_p-open set in Y.

Corollary 1: If M is ω_p-closed in the space (X, μ) with (Y, μ_Y) is subspace from X, then $M \cap Y$ is ω_p-closed set in Y.

Definition 6: A function f from space X into space Y we call it pre-open function when image of all preopen set at X is preopen set at Y.

Lemma 1: If $f: (X, \tau_X) \rightarrow (Y, \tau_Y)$ is bijective pre-open function, then the image of all ω_p-open set at X is ω_p-open set at Y.

Proof: If H is an ω_p-open set at X, and $y \in f(H)$, so there is $x \in X$ so that $f(x)=y$ (because f is bijective), since it is $y \in f(H)$, then $x=f^{-1}(y) \in f^{-1}(f(H))=f(H) \in f(H)$ (because one to one), hence $x \in H$ which is ω_p-open, thus we have preopen set W at X where $x \in W$ and $W-H$ will be countable, so $f(W-H)$ is countable subset in Y, however $f(W-H)=f(W)-f(H)$, since $f(W)$ is preopen at Y (because of f is pre-open function), with $x \in W$, so $f(x)=y \in f(W)$, therefore $f(H)$ is ω_p-open set in Y.

Proposition 3: A property of spaces which is ω_pT_i-space, $i=0, 1, 2$ is open hereditary property.

Proof: Take Y is a subspace of ω_pT_0-space X and x, y as distinct points in Y, hence x, y are distinct points in X which is ω_pT_0-space, so there is ω_p-open subset W in X such that $x \in W, y \notin W$. We have $W \cap Y$ is ω_p-open subset of Y(since f is bijective), (by lemma 1) with $x \in W \cap Y, y \notin W \cap Y$ (because $x \in W$ and $x \in Y$ but $y \notin W$), therefore Y is ω_pT_0-space, which means ω_pT_0-space is hereditary property.

Proposition 4: Set f is function of X into Y be homomorphism then whether X ω_pT_i-space then Y is ω_pT_i, where $i=0, 1, 2$.

Proof: To prove Y is ω_pT_0-space, whenever X is ω_pT_0-space and y_1, y_2 are distinct points in Y, then there are distinct points x_1, x_2 in X with $f(x_1)=y_1$, $f(x_2)=y_2$ (since f is a bijective function), so there exists ω_p-open subset W of X with $x_1 \in W$ and $x_2 \notin W$ (because X is ω_pT_0-space) there is open set G containing x with $G-W$=countable. So $f(G-W)=f(G) - f(W)$ is countable. $f(G) \subseteq f(G), f(G) = f(G) \subseteq f(G)$ then $f(G)$ is preopen set so $f(W)$ is ω_p-open set $f(x_1)=y_1 \in f(W)$ and $f(x_2)=y_2 \notin f(W)$, where $f(W)$ will be ω_p-open partial set of Y, therefore Y is ω_pT_0-space. By same method, we can prove the other part.

Proposition 5: A topological space (X, τ_X) is ω_pT_1-space if and only if any singleton set $\{x\}$ of X is ω_p-closed subset of X.

37
Proof: Suppose any singleton subset \{x\} of \(X \) is \(\omega_p \)-closed subset of \(X \) for any \(x \in X \), and let \(x, y \) be distinct points in \(X \), so \(\{x\}^c, \{y\}^c \) are \(\omega_p \)-open sets containing \(y, x \) respectively, so \(X \) is \(\omega_p \)-T_1-space.

Conversely, let \(X \) be an \(\omega_p \)-T_1-space, to prove \(\{x\} \) is \(\omega_p \)-closed subset of \(X \), that means to prove \(\{x\}^c \) is \(\omega_p \)-open partial set from \(X \). Let \(y \in \{x\}^c \), so \(y \neq x \) and there is \(\omega_p \)-open set \(W \) at \(X \) such that \(y \in W, x \notin W \), so \(y \in W \subseteq \{x\} \), thus \(\{x\}^c \) is \(\omega_p \)-open set, therefore \(\{x\} \) is \(\omega_p \)-closed, but \(x \) is arbitrary point in \(X \), that means every singleton subset of \(X \) is \(\omega_p \)-closed.

Proposition 6: A topological space \((X, \tau_X)\) is \(\omega T_0 \)-Space iff \(cl_{\omega_p} (\{x\}) \neq cl_{\omega_p} (\{y\}) \) for each distinct points \(x \) and \(y \) in \(X \).

Proof: Suppose \(cl_{\omega_p} (\{x\}) \neq cl_{\omega_p} (\{y\}) \) with different elements \(x \) and \(y \) in \(X \), so there is at least one element exists in one of them and not in the other, say \(a \in cl_{\omega_p} (\{x\}), a \notin cl_{\omega_p} (\{y\}) \), and suppose \(x \notin cl_{\omega_p} (\{y\}) \), because if \(x \in cl_{\omega_p} (\{y\}) \) then \(cl_{\omega_p} (\{x\}) \subseteq cl_{\omega_p} (\{y\}) \).

Conversely, if \(X \) is \(\omega_p T_0 \)-space and \(x, y \) are distinct points in \(X \), so there is \(\omega_p \)-open set \(U \) of \(X \) with \(x \in U \) and \(y \notin U \), then \(X-U \) is \(\omega_p \)-closed set contains \(y \) but not \(x \), from definition of \(cl_{\omega_p} (\{y\}) \) we get, \(cl_{\omega_p} (\{y\}) \subseteq X-U \), which means \(x \notin cl_{\omega_p} (\{y\}) \) but \(x \in cl_{\omega_p} (\{x\}) \), so that \(cl_{\omega_p} (\{x\}) \neq cl_{\omega_p} (\{y\}) \).

Definition 7: Any space \(X \) called :
1- \(\omega_p \)-regular space for any point \(x \in X \) and with \(M \) closed at \(X \) and \(x \notin M \), there is no mutual points of \(\omega_p \)-open sets \(W_1, W_2 \) in \(X \) at which \(x \in W_1 \) and \(M \subseteq W_2 \).
2- \(\omega_p \)-regular space if for any point \(x \in X \) with all \(\omega_p \)-closed subset \(M \) of \(X \) with \(x \notin M \), so we have sets \(W_1, W_2 \in \tau \), with \(W_1 \cap W_2 = \emptyset \) in which \(x \in W_1 \) and \(M \subseteq W_2 \).
3- \(\omega_p \)-regular space if for any point \(x \in X \) with all \(\omega_p \)-closed subset \(M \) of \(X \) with \(x \notin M \), so we have \(\omega_p \)-open sets \(W_1, W_2 \) in \(X \), with \(W_1 \cap W_2 = \emptyset \) in which \(x \in W_1 \) and \(M \subseteq W_2 \).

Remark 3:
1) Regular space is \(\omega_p \)-regular but the converse is not true.
2) Every \(\omega_p \)- regular space is \(\omega_p \)-regular.
3) Every \(\omega_p \)- regular space is \(\omega_p \)-regular.

Example 4:
1- \(X=\{1,2,3\}, \tau=\{\emptyset, X,\{1\}\} \), we have \(\tau^c=\{X,\emptyset,\{2,3\}\} \).So \(X \) is not regular but it is \(\omega_p \)-regular.
2- Let \(X=\{1,2,3\}, \tau=\text{indirec} \) is regular, \(\omega_p \)-regular, and \(\omega_p \)-regular space, but not \(\omega_p \)-regular.

Example 5: The co-finite supra topological space \((Z, \tau_{cof})\) is \(\omega_p \)-regular and \(\omega_p \)-regular space while it is neither \(\omega_p \)-regular, nor a regular.

Theorem 1: A space \((X, \tau)\) be \(\omega_p \)-regular space iff for all point \(x \) in \(X \) with all \(\omega_p \)-neighborhood \(K \) to \(x \), having neighborhood \(W \) in \(X \) of \(x \) with \(cl(W) \subseteq K \).

Proof: If \(X \) be \(\omega_p \)-regular space, let \(x \in X \) and \(K \) be a \(\omega_p \)-neighborhood to \(x \), so there exists \(\omega_p \)-open set \(E \) at \(X \) and \(x \in E \subseteq K \), hence \(E^c \) is \(\omega_p \)-closed set at \(X \) and \(x \notin E^c \), but \(X \) is \(\omega_p \)-regular, thus we have two different sets open \(W, B \) at \(x \), \(x \in W, E^c \subseteq B \), then \(W \) is neighborhood to \(x \) and \(W \subseteq B^c \), where \(B^c \) is closed set in \(X \), therefore \(cl(W) \subseteq cl(B^c) = B^c \), which means \(cl(W) \subseteq B^c \). From (1) & (2) we have, \(cl(W) \subseteq B^c \subseteq E \subseteq K \Rightarrow cl(W) \subseteq K \).

Conversely, Set \(x \in X \) and \(M \) is \(\omega_p \)-closed set at \(X \) with \(x \notin M \), so \(x \in M^c \) which is \(\omega_p \)-open set in \(X \), then \(M^c \) is \(\omega_p \)-neighborhood to \(x \), so we have neighborhood \(W \) at \(X \) to \(x \) such that \(cl(W) \subseteq M^c \), since \(W \) is the neighborhood
to x, then there will be open set W_1 in X with $x \in W_1 \subseteq W$, from $cl(W) \subseteq M^c$ we get $M \subseteq (cl(W))^c$, thus $(cl(W))^c$ is open subset of X and since $W \cap W^c = \emptyset$, then $W_1 \cap (cl(W))^c = \emptyset$ (because $W_1 \subseteq W$ and because $W \subseteq cl(W)$, so $(cl(W))^c \subseteq W^c$). so for all point x in X with all ω_p closed set M in X where $x \notin M$ there is disjoint open sets $W_1, (cl(W))^c$ such that $x \in W_1$ and $M \subseteq (cl(W))^c$, that implies X is ω_p^*regular.

Proposition 7:
Every open subspace of w_p regular space is w_p regular.

Proof:
If Y be subspace of an ω_p regular space X, take M as a closed set at Y and q as any point at Y such that $q \notin M$, so there is closed set M' in X such that $M = M' \cap Y$, it obvis $q \notin M$, because if opposite, we get $q \in M \cap Y$ that equal M which is a contradiction, so $q \notin M$, but X is ω_p regular, so that there are two ω_p open sets W, B in X with $Q \in W$, $M' \subseteq B$, with $W \cap B = \emptyset$, thus $W \cap B \cap Y$ are ω_p open in Y, in which $q \in W \cap Y$ and $M' \cap Y = M \subseteq B \cap Y$ and $(W \cap Y) \cap (B \cap Y) = (W \cap B) \cap Y = \emptyset \cap Y$ that equal \emptyset, so Y is ω_p regular space.

Lemma 2:
Let $f: X \rightarrow Y$ be a homeomorphism function if A is preopen in X, then $f(A)$ is preopen in Y.

Proof:
Set A is preopen in X then $A \subseteq int(cl(A))$ so by take f for two sides then $f(A) \subseteq f(int(cl(A))$(1) but is continuous , then $f(cl(A)) \subseteq clf(A)$ by take interior for two sides we get $int(f(cl(A)) \subseteq int(cl(A))$(2) so by (1) and (2) we have $f(A) \subseteq int(cl(A))$ that is $f(A)$ is preopen in Y.

Lemma 3:
Let f from X into Y be homeomorphism then if G is preopen and $G \subseteq Y$, then $f^{-1}(G)$ is also preopen in X.

Proof:
Since G is pre-open at Y so $G \subseteq G^c$ then by take f^{-1} for both sides we have $f^{-1}(G) \subseteq f^{-1}(G^c)=f^{-1}(G)^c$ so $f^{-1}(G) \subseteq f^{-1}(G)^c$ so $f^{-1}(G)$ is preopen in X.

Lemma 4:
Let f from X into Y be homeomorphism function if A be ω_p open and $A \subseteq X$, then $f(A)$ ω_p open and $f(A) \subseteq Y$.

Proof:
Set A be ω_p open at X to prove $f(A)$is ω_popen at Y , let $y \in f(A)$ then , $x = f^{-1}(y) \in f^{-1}(f(A)) = A$ but A is ω_p open set then there exists preopen set G in X containing x such that $G \cap A = \emptyset$ is countable so $f(G\cap A) = \text{countable}$ since f is bijective but $f(G-A) = f(G) - f(A)$ but $f(G)$ is also preopen set by above lemma , then $f(G) - f(A) = \text{countable}$, then $f(A)$ is also ω_p open set .

Lemma 5:
Let f be a homeomorphism function then the inverse image of ω_p open set is also ω_p open.

Proposition 8:
1- The property of space X being ω_pregular is topological property.
2- The property of space X we call it ω^*_p regular is topological property.
3- A property of space X we call it ω^{**}_p regular is topological property.

Proof:
1- Suppose (X, τ_X) is ω_pregular, with f is homeomorphism function from a topological space Xinto a topological space Y, let M be closed in Y and q is arbitrary point in Y in which $q \notin M$, so there is point $p \in X$ with $f(p)=q$, we get $f^{-1}(M)$ is closed at X (because f is continuous function) and $f^{-1}(q) = p \notin f^{-1}(M)$, but X is an ω_p regular space, so there are two ω_p open sets W, B in X where $p \in W$, $f^{-1}(M) \subseteq B$, with $W \cap B = \emptyset$, so $f(p) = q \in f(W)$ with $f(f^{-1}(M)) = M \subseteq f(B)$ where $f(W), f(B)$ are ω_p open sets in Y (by lemma **), likewise $f(W) \cap f(B) = f(W \cap B) = f(\emptyset) = \emptyset$, hence Y is ω_p regular, therefore the property space X being ω_p regular is topological property.
2- If \(f : X \to Y \) is a homeomorphism function and X be \(\omega_p^* \) regular space to prove Y is also \(\omega_p^* \) regular, let \(q \in M \) be \(\omega_p \) closed set in Y and \(q \not\in M \) then \(p=f^{-1}(M) \) is \(\omega_p \) closed in X by (lemma 4) and \(X \omega_p^* \) regular space, then we have two open sets H, K with \(p \in H \) and \(f^{-1}(M) \subseteq K \) and \(H \cap K = \emptyset \), \(q \neq f(p) \in f(H) \) and \(M = f f^{-1}(M) \subseteq f(K) \) also \(f(H) \) and \(f(K) \) will be also open sets sincef is homeomorphism and \(f(H) \cap f(K) = f(H \cap K) = f(\emptyset) = \emptyset \) then Y is \(\omega_p^* \) regular space.

3- Prove by the same context.

Theorem 2:
A topological space \((X, \tau_X)\) is \(\omega_p \)-regular iff for every \(x \in X \) and for all open set \(U \) in \(X \) contained \(x \), there is \(\omega_p \)-open \(V \) in \(X \) with \(x \in V \subseteq \text{cl}_{\omega_p}(V) \subseteq U \).

Proof:
Suppose \(X \) is \(\omega_p \)-regular space, set \(x \in X \) and \(U \) is an open in \(X \) such that \(x \in U \), so \(U^c \) is closed in \(X \) that not containing \(x \), but \(X \) is \(\omega_p \)-regular space, so there are two \(\omega_p \)-open sets \(V, W \) with \(x \in V, U^c \subseteq W \) and \(V \cap W = \emptyset \), so \(V \subseteq W^c \), thus \(\text{cl}_{\omega_p}(V) \subseteq \text{cl}_{\omega_p}(W^c) = W^c \ldots (1) \), and since \(U^c \subseteq W \), then \(W^c \subseteq U \ldots (2) \), from (1) and (2) we get, \(x \in V \subseteq \text{cl}_{\omega_p}(V) \subseteq W^c \subseteq U \), which means \(x \in V \subseteq \text{cl}_{\omega_p}(V) \subseteq U \).

Conversely, let \(M \) be closed in \(X \) and \(x \) is arbitrary point in \(X \) with \(x \not\in M \), so \(M^c \) is open in \(X \) containing \(x \), then from a hypothesis there is \(\omega_p \)-open set \(V \) in \(X \) in which \(x \in V \subseteq \text{cl}_{\omega_p}(V) \subseteq M^c \), since \(\text{cl}_{\omega_p}(V) \subseteq M^c \), hence \(M^c = M \subseteq (\text{cl}_{\omega_p}(V))^c \) (since \(\text{cl}_{\omega_p}(V) \) is \(\omega_p \) closed set, so \((\text{cl}_{\omega_p}(V))^c \) is \(\omega_p \) open set), and since \(V \subseteq \text{cl}_{\omega_p}(V) \), hence \(V \cap (\text{cl}_{\omega_p}(V))^c = \emptyset \). Therefore, there are two \(\omega_p \)-open sets \(V, (\text{cl}_{\omega_p}(V))^c \) in \(X \) such that \(x \in V, M \subseteq \text{cl}_{\omega_p}(V)^c \), and \(V \cap (\text{cl}_{\omega_p}(V))^c = \emptyset \), then \(X \) is \(\omega_p \)-regular space.

Definition 8:
A topological space \((X, \tau)\) we call it:

1- \(\omega_p T_3 \)-space if it be \(\omega_p \)-regular \(T^1 \)-space.

2- \(\omega_p^* T_3 \)-space if it is \(\omega_p^* \)-regular \(T^1 \)-space.

3- \(\omega_p^{**} T_3 \)-space if it is \(\omega_p^{**} \)-regular space and supra \(T^1 \)-space.

Example 6:
The discrete topological space \((R, \tau_D)\) is \(\omega_p, \omega_p^* \) and \(\omega_p^{**} T^3 \)-space.

Remark 4:
1- Every \(\omega_p T_3 \)-space is \(\omega_p \)-regular.

2- \(\omega_p \)-regular space need not be \(T^2 \)-space \((R,\tau_{ind})\).

3- \(\omega_p T^1 \)-space need not be \(\omega_p \)-regular \((R,\tau_{cof})\).

Example 7:
\((R,\tau_{ind})\) is \(\omega_p \)-regular and \(\omega_p T^2 \)-space but neither \(\omega_p^* \)-regular nor \(\omega_p T^3 \)-space.

Definition 9 [4]:
If \(X \) is space we called \(X \) to be Excluded space, if \(\tau_{Ex} = \{U: U \subseteq X, \{x\} \not\subseteq U, \text{for some } x \in X \} \cup \{X\} \). Excluded space is neither \(T^1 \) nor regular space.

Definition 10 [4]:
Set \(X \) be space we called \(X \) to be Included space if \(\tau_{In} = \{U: U \subseteq X, \{x\} \subseteq U, \text{for some } x \in X \} \cup \{\emptyset\} \). Included space is \(T^1 \) but not regular so it is not \(T^3 \).

Example 8:
To show that \((X, \tau_{In})\) is \(\omega_p T^3 \) since it is \(T^1 \) space now let \(\{2\} \subseteq X \) (since \(1 \not\in \{2\} \)) i.e. \(R \subseteq \{2\} \subseteq \emptyset \) R so \(\{2\} = (R \setminus \{2\})^c \subseteq \text{closed } R \) and \(3 \in R \) with \(3 \not\in \{2\} \), since \(\{1,3\} \subseteq \text{open } R \) so it is \(\omega_p \)-open, T.p. \(\{2\} \) is \(\omega_p \)-open, \(2 \subseteq \{2\} \subseteq \emptyset \), \(\{2\} \subseteq R \) containing \(\{2\} \), \(\{2\} \) is \(\omega_p \)-open, \(\{2\}^c = \emptyset \Rightarrow \{2\} \not\subseteq \{2\}^c \) i.e. \(\omega_p \)-open.

The following scheme is helpful.

Proposition 9:
For all \(\omega_p T_3 \) space be \(\omega_p T_2 \)-space.

Proof:
Suppose \((X, \tau_X)\) is \(\omega_p T_3 \) space, let \(x, y \) any different points in \(X \), we have \(X \) is \(T^1 \) space (from definition of \(\omega_p T_3 \) space), so \(\{x\} \) is closed and \(y \not\in \{x\} \), since \(X \) is \(\omega_p \)-regular so there are \(\omega_p \)-open sets \(W, B \) with \(\{x\} \subseteq W, y \in B \) also \(W \cap B \) equal \(\emptyset \), since \(x \in \{x\} \subseteq W \), therefore \(X \) is \(\omega_p T^2 \)-space.
Proposition 10:
1- Every ω_pT_3-space is ω_pT_1-space.
2- Every $\omega_p^*T_3$-space is ω_pT_2-space.
3- Every $\omega_p^{**}T_3$-space is ω_pT_2-space.

Proof:
1- As in proposition (9).
2- Set $x, y \in X$ and x, y are not equal, since X is $\omega_p^*T_3$-space \Rightarrow $x \in T_3 \Rightarrow \{x\}$ is closed in X. $x \in [x], [x]$ is closed , $y \in [x]$ so $[x]$ is ω_p closed but X is ω_p^*-regular so then exists two open sets W, B such that $[x] \subseteq W, y \in B$ but every open is ω_p open so we have W, B are two ω_p-open sets and $x \in [x] \subseteq W$, therefore X is ω_pT_2-space.
3- Similarly to the above proposition.

Definition 11:
A space X we call it ω_p-normal if for every closed two sets F_1, F_2 in X then there exist two different ω_p-open sets H, K containing F_1, F_2 respectively.

Definition 12:
A space X we call it ω_p^*-normal if for any two ω_p-closed sets F_1, F_2 in X, we have two different ω_p-open sets H, K containing F_1, F_2 respectively.

Definition 13:
A space X we call it ω_p^{**}-normal if for any two ω_p-closed sets F_1, F_2 in X, we have two different ω_p-open set H, K containing F_1 and F_2 respectively.

Remarks 5:
1- Every normal space is ω_p-normal but the converse is not true.
2- Every ω_p^*-normal is ω_p-normal.
3- Every ω_p^{**}-normal is ω_p^*-normal.
4- Every ω_p^{**}-normal space is ω_p-normal but the converse is not true.

Proposition 11:
A space X is ω_p-normal if to each closed set F with an open set U containing F there exist an ω_p-open set V, containing F so that $F \subseteq V \subseteq \omega_p cl(V) \subseteq U$.

Theorem 3:
A space X is ω_p-normal iff for all closed set F with any set G containing F, there is an ω_p-open set V with $F \subseteq V \subseteq G$.

Proof:
Set F is any closed set and G is an open set with $F \subseteq G$, so G^c is closed set and $F \cap G^c = \emptyset$. But X is an ω_p-normal, then we have ω_p-open sets U, V with $G^c \subseteq U, \emptyset \subseteq V$ and $U \cap V = \emptyset$ so that $V \subseteq U^c$ so $\omega_p cl(V) \subseteq \omega_p cl(U^c) \subseteq U^c \subseteq (1)$, since U^c is ω_p-closed set, but $G^c \subseteq U$, then $U^c \subseteq G \subseteq (2)$ by (1) and (2) we get $\omega_p cl (V) \subseteq G$ therefore there exist ω_p-open set V such that $F \subseteq V$ and $\omega_p cl(V) \subseteq G$.

Conversely. Let L and M be closed subsets of X with $L \cap M = \emptyset$ so that $L \subseteq M^c$, so by hypothesis there is an ω_p-open set V with $L \subseteq V$ and $\omega_p cl (V) \subseteq M^c$ so $M \subseteq (\omega_p cl(V))^c$ also $V \cap (\omega_p cl(V))^c = \emptyset$ then V and $(\omega_p cl(V))^c$ are two different ω_p-open sets, with $L \subseteq V, M \subseteq (\omega_p cl(V))^c$, therefore, X is ω_p-normal space.

CONCLUSIONS
In this paper, we introduce new types of separation axioms via W_p-open sets. In addition to this, we get many results and the most important of which are:

1. If W is ω_p - open in a topological space (X, τ_X) and (Y, τ_Y) is a partial set of X, then $W \cap Y$ is ω_p - open set in Y.

2. A property of spaces which is $\omega_p T_i$-space, $i = 0, 1, 2$ is hereditary property.

3. A space (X, τ_X) be ω_p^* regular space iff for all point $x \in X$ with all ω_p-neighborhood K to x, having neighborhood W in X of x with $cl(W) \subseteq K$.

4. A topological space (X, τ_X) is ω_p regular iff for every $x \in X and for all open set U in X contained x, there is ω_p-open V in X with $x \in V \subseteq cl_{\omega_p}(V) \subseteq U$.

5. A space X is ω_p-normal iff for all closed set F with any set G containing F, there is an ω_p-open set V with $F \subseteq V \subseteq G$.

ACKNOWLEDGMENT
We wish to express our sincere thanks to the Mustansiriyah University, College of Science, Department of Mathematics for supporting this research.
REFERENCES

How to Cite