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machine (1/ / (∑𝐶𝜎𝑗 + 𝑅𝐿 + 𝑇𝑚𝑎𝑥)), where machine idle time is prohibited. In this paper, one of the 

multiobjective function problem for single criteria on just one machine is being studied. To obtain 

the optimal solution for the suggested problem, we propose to use Branch and Bound method 

(BAB) depending upon some dominance rules. This exact method used new technique to obtain 

three upper bounds (UB) and single lower bound (LB). The proposed BAB method proved its 

sufficiency by the practical results for n ≤ 15 in a reasonable time. Lastly, we proved a theorem 

as special case for our problem. 
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 الخلاصـة

في هذا المقال اقترحنا خوارزمية دقيقه لمسألة جدولة ماكنه واحده لتصغير مجموع وقت الاتمام الكلي ومدى التأخير واكبر  
غير مسموح به. في هذا البحث درسنا واحدة من مسائل دالة متعددة الاهداف  تأخير على ماكنة واحدة بحيث وقت توقف الماكنه

لمعيار واحد على ماكنة واحدة. لايجاد الحل الامثل للمسألة المقترحة استخدمنا طريقة التفرع والتقيد بالاعتماد على قواعد 
ه الطريقة بالنتائج العمليه الى حد عدد الاعمال يساوي الهيمنة باسلوب جديد لايجاد القيود العليا والقيد الادنى وقد اثبت كفاءة هذ

 عمل في وقت معقول. واخيرا برهنا نظرية كحالة خاصة لمسألتنا. 15

INTRODUCTION 
The Machine Scheduling Problems (MSP) 

plays a very important role in most 

manufacturing and production systems as well as 

in most information processing environment. 

The scheduling theory plays a great role in 

solving the machine scheduling problem (MSP) 

which are work in many fields for instance 

production facilities. The basic concept of MSP 

is interpreted for each of objectives, which we 

called it jobs, an interval of execution on a single 

machine, where all constraints are satisfied. The 

solution of MSP is called schedule can be 

considered a best possible to minimize the 

multiobjective function [1]. To improve the 

society in manufacturing, we use the production 

process to end the goods manufacturing for parts 

of them or some components and raw materials. 

The following are called the customers' 

expectations: 

1. The quality of the product, 

2. The safety environmental, 

3. The attractive of product,  

4. The truthful products…, etc. 

So, the decision maker is must study those 

expectation well to minimize the cost, so they 

always must monitor the performance, the 

objectives and the priority levels. There are 

many objectives must be satisfied like number of 

late jobs, total lateness and completion time. The 

single machine, closed shop, flow shop, open 

shop and hybrid job shop are as considered as 

scheduling [2]. In this study, we introduced one 

of single machine problems, so that (1/ / (∑𝐶𝜎𝑗 +

𝑅𝐿 + 𝑇𝑚𝑎𝑥)) is minimized. More specifically, we 

consider that the set of jobs 𝑁 = {1,2, … , 𝑛} are 

considered on a single machine, each job 𝑗 ∈ N 

has positive integer 𝑝𝑗  and 𝑑𝑗 (where 𝑝𝑗 is the 
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processing time of job 𝑗 and 𝑑𝑗 is the due date of 

job 𝑗). Machine idle time is not permitted and the 

machine cannot process more than one job at a 

time. 

There are many papers focus on multi-objective 

function single MSP, Ali and Abdul-Kareem 

(2017), try to solve multicriteria objective 

function for single machine to minimize 1//
(𝑇𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥, ∑𝑉𝑖), they suggested heuristic and 

exact method (BAB) to solve their problem [3]. 

Abdul–Razaq and Motair (2018) they consider 

single MSP to minimize the sum of four cost 

functions; total completion times, total tardiness, 

maximum tardiness, and maximum earliness. 

The minimization based on two types, in the first 

one they study some special cases including 

lexigraphical minimization of problem. In the 

second type they minimize the four cost 

functions simultaneously and propose algorithm 

to find the set of efficient solution for the 

discussed problem [4]. Chachan and Jaafar 

(2019) present BAB method to minimize the sum 

of total completion time, total tardiness, total 

earliness, number of tardy jobs and total late 

work with unequal release dates. they proposed 

six heuristic methods for account upper bound 

(UB). Also, to obtain lower bound (LB) to this 

problem they use Moore and Lawler’s algorithm. 

And some dominance rules were suggested, with 

two special cases [5].   

Abbas (2019), Study a multi-objectives single 

MSP, the objective is to minimize four cost 

functions (∑Ci+∑Ui+∑Ti+Tmax) by BAB method 

and local search methods (LSMs) and developed 

a simple heuristic method to solve the considered 

problem [6]. Jawad, Ali and Hasanain (2020), 

investigated in their paper some methods to 

solve one of the multi-criteria machine 

scheduling problems. our discussed problem is 

the total completion time and the total earliness 

jobs, they solved our problem by proposed some 

heuristic methods which provided good results. 

They applied (BAB) method with new suggested 

upper and lower bounds to solve the discussed 

problem, which produced exact results for 𝑛 ≤
20 in a reasonable time [7].      

The rest of this paper is organized as follows: in 

section 2, the multiobjective problem definition 

is described, in section 3, Dominance rule for 

adjacent jobs is presented. in section 4, 

Dominance Rules are presented. In section 5, we 

describe the decomposition of our problem (P), 

in section 6, we introduced the BAB method with 

DR that we used in this paper to find the optimal 

solution, Comparisons Results for P-Problem are 

introduced in section 7. Lastly, Conclusion and 

Future Work are presented in section 8. 

We define the most important objective function 

use in our study: 

𝐶𝑗 = ∑ 𝑝𝑘
𝑗
𝑘=1   

𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗. 

𝐿𝑚𝑖𝑛 = min
𝑗
{𝐿𝑗}. 

𝐿𝑚𝑎𝑥 = max
𝑗
{𝐿𝑗}. 

𝑅𝐿 = 𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛.  

𝑇𝑗 = max
𝑗
{𝐿𝑗 , 0} and  𝑇𝑚𝑎𝑥 = max

𝑗
{𝑇𝑗 , 0}. 

In this paper, we will take in consideration some 

important rules like:  Shortest Processing Time 

(SPT Rule [8]), Earliest Due Date (EDD rule 

[9]), Minimum Slack Time (MST rule [10]) 

Lemma (1) [11]: For the 1//(∑𝐶𝑗 , ∑ 𝑇𝑗) 

problem, if pi ≤ pj and di ≤ dj then there exists 

an optimal sequencing in which job i sequencing 

before job j. 

Formulation of the Discussion Problem 

Mathematically 
The single MSP under consideration can be 

defined as follows:  for a given schedule 𝜎 =
(1,2, … , 𝑛): 

𝑉 = 𝑀𝑖𝑛 {∑𝐶𝑗 + 𝑅𝐿(𝜎) + 𝑇𝑚𝑎𝑥} 

s.t. 

𝐶1 ≥ 𝑝𝜎(1), 

𝐶𝑗 = 𝐶(𝑗−1) + 𝑝𝜎(𝑗), 𝑗 = 2,3, … , 𝑛 

𝐿𝑗 = 𝐶𝑗 − 𝑑𝜎(𝑗), 𝑗 = 1,2, … , 𝑛                

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝜎(𝑗), 𝑗 = 1,2, … , 𝑛. 

𝑅𝐿(𝜎) = 𝐿𝑚𝑎𝑥(𝜎) − 𝐿𝑚𝑖𝑛(𝜎),  
𝐶𝑗  , 𝑇𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛. }

 
 
 
 

 
 
 
 

      P 

The target of P- Problem is to find the best 

arrangement of the jobs on a single machine to 

minimize (∑𝐶𝜎𝑗 + 𝑅𝐿 + 𝑇𝑚𝑎𝑥), 𝜎 ∈ 𝑆 (where 𝑆 

is the set of all feasible solutions). 

Dominance Rules for Adjacent Jobs 
Let 𝐹(𝑆) and 𝑅(𝑆) represent the total completion 

times and range of lateness for a particular 

schedule 𝑆,   Then: 

𝐹(𝑆) = ∑ 𝐶(𝑆(𝑗))
𝑛
𝑗=1 , 

𝑅𝐿(𝑆) = 𝑚𝑎𝑥{ 𝐿𝑗(𝑆)} –𝑚𝑖𝑛 {𝐿𝑗(𝑆)},               
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   𝑇𝑚𝑎𝑥(𝑆) = 𝑚𝑎𝑥{0 , 𝐿𝑗}(𝑆) 

Hence the problem becomes one of determining 

a schedule 𝑆 which minimizes the following 

objective function: 

𝑍(𝑠) = 𝐹(𝑠) + 𝑅𝐿(𝑆) + 𝑇𝑚𝑎𝑥(𝑆) (1) 

Let 𝑆 be a schedule in which job 𝑖 appears before 

job 𝑗. Let 𝑆1 be a schedule which is obtained 

from 𝑆 by interchanging 𝑖 and 𝑗 only. Let 𝑇𝐵 be 

the sum of the process times of all the jobs 

scheduled before jobs 𝑖 and 𝑗 and 𝑇𝐵 is the same 

in both schedules 𝑆 and 𝑆1. Let 𝐿𝑖(𝑆) and 𝐿𝑗(𝑆) 

be the lateness of job 𝑖 and 𝑗 in a schedule 𝑆 and 

a similar definition apply to 𝐿𝑖(𝑆1) and  𝐿𝑗(𝑆1) 

for 𝑆1. 

Let 𝐹(𝑆) and 𝐹(𝑆1) be the sum of total 

completion times of all jobs in schedules 𝑆 and 

𝑆1 respectively. Let 𝐹0 denote the sum of 

completion times of all jobs  𝐽– (𝑖 , 𝑗) , then:  

𝐹(𝑆) = 𝐹0 + (𝑇𝐵 + 𝑝𝑖) + (𝑇𝐵 + 𝑝𝑖 + 𝑝𝑗) 

𝐹(𝑆1) = 𝐹0 + (𝑇𝐵 + 𝑝𝑗) + (𝑇𝐵 + 𝑝𝑗 + 𝑝𝑖) 

Hence by subtraction the above two relations  

𝐹(𝑆) − 𝐹(𝑆1) = 𝑝𝑖 − 𝑝𝑗. 

Let 𝑅(𝑆) and 𝑅(𝑆1) be the range of lateness 

measures of schedules 𝑆 and 𝑆1 respectively. If  

𝐿 = 𝑚𝑎𝑥{𝐿𝑘 | 𝑘 ∈ 𝐽 − (𝑖, 𝑗) } and 

𝐿0 = 𝑚𝑖𝑛{𝐿𝑘 | 𝑘 ∈ 𝐽 − (𝑖, 𝑗)}. 

Let 𝑇(𝑆) and 𝑇(𝑆1)  represent the maximum 

tardiness measures in schedules 𝑆 and 𝑆1 

respectively.  

If 𝑇𝑚𝑎𝑥(𝑆) =  𝑚𝑎𝑥{𝑇𝑘 | 𝑘 ∈ 𝐽 − (𝑖, 𝑗)} and 

𝑇𝑚𝑎𝑥(𝑆1) = 𝑚𝑎𝑥{𝐿𝑘 | 𝑘 ∈ 𝐽 − (𝑖, 𝑗)} in either 

schedule. 

Let 𝑚𝑎𝑥{𝐿, 𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} = 𝑀 

      𝑚𝑖𝑛{𝐿0, 𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} = 𝑁 

     𝑚𝑎𝑥{𝐿, 𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} = 𝑊 

𝑚𝑖𝑛{𝐿0, 𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} = 𝑄 

Then: 

𝑅𝐿(𝑆) = 𝑚𝑎𝑥{ 𝐿, 𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} 

−𝑚𝑖𝑛{𝐿0, 𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} = 𝑀 − 𝑁 

𝑅𝐿(𝑆1) = 𝑚𝑎𝑥{𝐿, 𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} −

𝑚𝑖𝑛{𝐿0, 𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} = 𝑊 − 𝑄  

Now under 𝑆: 𝐿𝑖 = 𝑇𝐵 + 𝑝𝑖 – 𝑑𝑖, 𝐿𝑗 = 𝑇𝐵 + 𝑝𝑖 +

𝑝𝑗 − 𝑑𝑗  

Under 𝑆1: 𝐿1𝑗 = 𝑇𝐵 + 𝑝𝑗  – 𝑑𝑗 , 𝐿1𝑖 = 𝑇𝐵 + 𝑝𝑗 +

𝑝𝑖 − 𝑑𝑖 

Then the objective function under the schedule 

𝑆 and 𝑆1 will be given by:  

𝑍(𝑆) = 𝐹(𝑆) + 𝑅(𝑆) + 𝑇𝑚𝑎𝑥(𝑆)
= 𝐹(𝑆) + (𝑀 − 𝑁) + 𝑇𝑚𝑎𝑥(𝑆) 

𝑍(𝑆1) = 𝐹(𝑆1) + 𝑅(𝑆1) + 𝑇𝑚𝑎𝑥(𝑆1)
= 𝐹(𝑆1) + (𝑊 − 𝑄) + 𝑇𝑚𝑎𝑥(𝑆1) 

Then: 

𝑍(𝑆) − 𝑍(𝑆1) = (𝑝𝑖 − 𝑝𝑗) + (𝑀 −𝑊) − (𝑁

− 𝑄) + 𝑇𝑚𝑎𝑥(𝑆) − 𝑇𝑚𝑎𝑥(𝑆1) 
(2) 

Now by definition: 

𝐿𝑖(𝑆) = 𝑇𝐵 + 𝑝𝑖 – 𝑑𝑖 (3) 

𝐿𝑗(𝑆) = 𝑇𝐵 + 𝑝𝑖 + 𝑝𝑗 − 𝑑𝑗  (4) 

𝐿𝑗(𝑆1) = 𝑇𝐵 + 𝑝𝑗  – 𝑑𝑗  (5) 

𝐿𝑖(𝑆1) = 𝑇𝐵 + 𝑝𝑗 + 𝑝𝑖 − 𝑑𝑖 (6) 

Theorem (1): Given  𝑝𝑖 > 𝑝𝑗 then we have the 

following cases: 

1. 𝑍(𝑆) – 𝑍(𝑆1) ≤ 𝑝𝑖 − 𝑝𝑗  if 𝑑𝑖 ≤ 𝑑𝑗. 

2. 𝑍(𝑆) – 𝑍(𝑆1) ≤ 𝑝𝑖 − 𝑝𝑗 + (𝑑𝑖 − 𝑑𝑗)if 𝑑𝑖 ˃ 𝑑𝑗. 

Proof:  

From relations (3-6), we have:  

𝑀 = max{𝐿, 𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} 

𝑁 = 𝑚𝑖𝑛{𝐿’, 𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} 

𝑊 = 𝑚𝑎𝑥{𝐿, 𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} 

𝑄 = 𝑚𝑖𝑛{𝐿’, 𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} 

Then: 

𝑍(𝑆) – 𝑍(𝑆1) = 𝑝𝑖 − 𝑝𝑗 + (𝑀 –𝑊) – (𝑁 − 𝑄)

+ 𝑇𝑚𝑎𝑥(𝑆) – 𝑇𝑚𝑎𝑥(𝑆1) 
𝑇𝑚𝑎𝑥(𝑆) = 𝑇𝑚𝑎𝑥(𝑆1) 
 So we have the following cases:  

Case (1): 𝒅𝒊 ≤ 𝒅𝒋 

From relation (3-6): 

𝐿𝑗(𝑆1) ≤ 𝐿𝑖(𝑆) ≤ 𝐿𝑖(𝑆1) 

𝐿𝑗(𝑆1) ≤ 𝐿𝑗(𝑆) ≤  𝐿𝑖(𝑆1) 

𝑚𝑖𝑛{𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} ≥ 𝑚𝑖𝑛{𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} 

     𝑖. 𝑒. ,   𝑄 ≥ 𝑁  

𝐿𝑗(𝑆) = 𝑇𝐵 + 𝑝𝑖 + 𝑝𝑗 − 𝑑𝑗≤𝐿𝑖(𝑆1) = 𝑇𝐵 + 𝑝𝑗 +

𝑝𝑖 − 𝑑𝑖 
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𝐿𝑖(𝑆) ≤ 𝐿𝑖(𝑆1)  

So 𝑚𝑎𝑥{𝐿𝑗(𝑆), 𝐿𝑖(𝑆)} ≤ 𝑚𝑎𝑥{𝐿𝑖(𝑆1), 𝐿𝑗(𝑆1)}  

𝑖. 𝑒. ,   𝑀 ≤ 𝑊. 
So from relation (2) we obtain 𝑍(𝑆)–𝑍(𝑆1) ≤
𝑝𝑖– 𝑝𝑗  

𝑍(𝑆)–𝑍(𝑆1) = 𝑝𝑖– 𝑝𝑗 + (M–W)– (N − Q) +

𝑇𝑚𝑎𝑥(𝑆) − 𝑇𝑚𝑎𝑥(𝑆1)  
𝑍(𝑆) – 𝑍(𝑆1) ≤  (𝑝𝑖 – 𝑝𝑗). 

Case (2):  𝒅𝒊 > 𝒅𝒋 

𝑚𝑖𝑛{ 𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} ≤ 𝑚𝑖𝑛{ 𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} 

     𝑖. 𝑒. ,   𝑄 ≤ 𝑁 

𝑀–𝑊 = 𝑚𝑎𝑥{𝐿, 𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} – 

𝑚𝑎𝑥{𝐿, 𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} 

𝐿𝑗(𝑆1) ≤ 𝐿𝑖(𝑆1)   

𝐿𝑗(𝑆)˃ 𝐿𝑖(𝑆)  

𝑀–𝑊 = 𝑚𝑎𝑥{𝐿, 𝐿𝑗(𝑆)}–𝑚𝑎𝑥{𝐿, 𝐿𝑖(𝑆1)} 

             𝐿𝑗(𝑆)˃ 𝐿𝑖(𝑆1)   

1. 𝐿 ≤ 𝐿𝑖(𝑆1) ≤ 𝐿𝑗(𝑆), then 𝑀 −𝑊 = 𝐿𝑗(𝑆) −

𝐿𝑖(𝑆1) = 𝑇𝐵 + 𝑝𝑖 + 𝑝𝑗 − 𝑑𝑗 − (𝑇𝐵 + 𝑝𝑗 + 𝑝𝑖 −

𝑑𝑖) = 𝑑𝑖 − 𝑑𝑗  

2. 𝐿𝑖(𝑆1) < L ≤ 𝐿𝑗(𝑆) = 𝑀 −𝑊 = 𝐿𝑗(𝑆) − 𝐿 ≤

 𝐿𝑗(𝑆)– 𝐿𝑖(𝑆1).  

3. 𝐿𝑖(𝑆1) ≤  𝐿𝑗(𝑆) < 𝐿 = 𝑀–𝑊 = 𝐿 – 𝐿 = 0. 

Therefore 𝑀 –  𝑊 is not greater than 𝑑𝑖– 𝑑𝑗,  

Hence (2) 𝑍(𝑆)–𝑍(𝑆1) ≤  ( 𝑝𝑖– 𝑝𝑗  )  + ( 𝑑𝑖– 𝑑𝑗). 

The following example explains case (1) of 

theorem (1).  

Example (1): 

 1 2 3 4 5 

𝒑𝒋 2 3 5 4 6 

𝒅𝒋 3 5 6 8 7 

Let’s choose 𝑆 = (1, 2, 3, 4, 5), let 𝐽𝑖 = 𝐽3 and 

𝐽𝑗 = 𝐽4,  𝑆1 = (1, 2, 4,3, 5). 

For sequence 𝑆 we have: 

𝑺 𝒋 1 2 3 4 5 

𝒑𝒋 2 3 5 4 6 

𝒅𝒋 3 5 6 8 7 

𝑪𝒋 2 5 10 14 20 

𝑳𝒋 -1 0 4 6 13 

𝑻𝒋 0 0 4 6 13 

For sequence 𝑆1 we have: 

𝑺𝟏 𝒋 1 2 4 3 5 

𝒑𝒋 2 3 4 5 5 

𝒅𝒋 3 5 8 6 7 

𝑪𝒋 2 5 9 14 20 

𝑳𝒋 -1 0 1 8 13 

𝑻𝒋 0 0 1 8 13 

 

𝐿𝑗(𝑆1) = 1 ≤ 𝐿𝑖(𝑆1) = 8   

𝐿𝑗(𝑆) = 6 ˃ 𝐿𝑖(𝑆) = 4  

𝐿𝑗(𝑆) = 6 ≤ 𝐿𝑖(𝑆1) = 8 

𝑚𝑎𝑥{𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} ≤ 𝑚𝑎𝑥{𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} 

 → 𝑚𝑎𝑥{4, 6} ≤ 𝑚𝑎𝑥{1, 8} 

𝑚𝑖𝑛{ 𝐿𝑗(𝑆1), 𝐿𝑖(𝑆1)} ≤ 𝑚𝑖𝑛{ 𝐿𝑖(𝑆), 𝐿𝑗(𝑆)} 

𝑚𝑖𝑛{1, 8} ≤ 𝑚𝑖𝑛{4, 6} 
𝑍(𝑆) = 𝐹(𝑆) + 𝑅𝐿(𝑆) + 𝑇𝑚𝑎𝑥(𝑆) and  𝑍(𝑆1) =

𝐹(𝑆1) + 𝑅𝐿(𝑆1) + 𝑇𝑚𝑎𝑥(𝑆1). 

Then  𝑍(𝑆) = 51 + 14 + 13 = 78 and 𝑍(𝑆1) =

50 + 14 + 13 = 77. 

𝑍(𝑆) – 𝑍(𝑆1) = 78 – 77 = 1 ≤ 𝑝𝑖  −  𝑝𝑗 = 5 – 4

= 1.  

This means: 

𝑍(𝑆) ≤ 𝑍(𝑆1) if  𝑝𝑖 > 𝑝𝑗 and  𝑑𝑖 ≤ 𝑑𝑗. 

The following example explains case (2) of 

theorem (1). 

Example (1): 

 1 2 3 4 5 

𝑝𝑗 2 3 5 4 6 

𝑑𝑗 3 5 8 6 7 

Let choose 𝑆 = (1, 2, 3, 4, 5), let  𝐽𝑖 = 𝐽3 and 𝐽𝑗 =

𝐽4,  𝑆1 = (1, 2, 4,3, 5). 

For sequence 𝑆 we have: 

𝑺 𝒋 1 2 3 4 5 

𝒑𝒋 2 3 5 4 6 

𝒅𝒋 3 5 8 6 7 

𝑪𝒋 2 5 10 14 20 

𝑳𝒋 -1 0 2 8 13 

𝑻𝒋 0 0 2 8 13 

For sequence 𝑆1 we have: 

𝑺𝟏 𝒋 1 2 4 3 5 

𝒑𝒋 2 3 4 5 5 

𝒅𝒋 3 5 6 8 7 

𝑪𝒋 2 5 9 14 20 

𝑳𝒋 -1 0 3 6 13 

𝑻𝒋 0 0 3 6 13 

𝑍(𝑆) = 𝐹(𝑆) + 𝑅𝐿(𝑆) + 𝑇𝑚𝑎𝑥(𝑆) and  𝑍(𝑆1) =

𝐹(𝑆1) + 𝑅𝐿(𝑆1) + 𝑇𝑚𝑎𝑥(𝑆1). 

Then  𝑍(𝑆) = 51 + 14 + 13 = 78 and 

𝑍(𝑆1) = 50 + 14 + 13 = 77. 

𝑝𝑖  −  𝑝𝑗 = 5 − 4 = 1. 
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𝑑𝑖  − 𝑑𝑗 = 8 − 6 = 2. 

Then 𝑝𝑖  −  𝑝𝑗 − (𝑑𝑖  − 𝑑𝑗) = 3 

𝑍(𝑆)–𝑍(𝑆1) = 78 – 77 = 1 ≤ 1 + 2 = 3.  

This means: 𝑍(𝑆) ≤ 𝑍(𝑆1)  

𝑝𝑖 > 𝑝𝑗  and 𝑑𝑖 > 𝑑𝑗. 

Dominance Rules 
Dominance Rules (DR’s) play a good role to obtain 

a good and fast approach to reducing the current 

sequence to be used specially in BAB method (for 

more details see [14]). 

Decomposition of 𝑷 − 𝑷𝒓𝒐𝒃𝒍𝒆𝒎  
The 𝑃 − 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 can be decomposed into three 

subproblems (SP1), (SP2) and (SP3), let these 

subproblems be as follows: 

𝑉1 = 𝑀𝑖𝑛 {∑𝐶𝑗} 

s.t. 

𝐶1 ≥ 𝑝𝜎(1),                

𝐶𝑗 = 𝐶(𝑗−1) + 𝑝𝜎(𝑗)  , 𝑗 = 2,3, … , 𝑛       

𝐶𝑗 ≥ 0,      𝑗 = 1,2, … , 𝑛. }
  
 

  
 

      SP1 

 

𝑉2 = 𝑀𝑖𝑛 {𝑅𝐿} 
     = 𝑚𝑖𝑛{𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛} 
s.t. 

𝐶1 ≥ 𝑝𝜋(1),  

𝐶𝑗 = 𝐶(𝑗−1) + 𝑝𝜋(𝑗),    𝑗

= 2,3, … , 𝑛. 
𝐿𝑗 = 𝐶𝑗 − 𝑑𝜋(𝑗),          𝑗 = 1,2, … , 𝑛. 

 𝐿𝑚𝑎𝑥 ≥ 𝐿𝑚𝑖𝑛,  
𝐶𝑗 ≥ 0,                         𝑗 = 1,2, … , 𝑛. }

 
 
 
 

 
 
 
 

      SP2 

 

𝑉3 = 𝑀𝑖𝑛 {𝑇𝑚𝑎𝑥} 

      = 𝑚𝑖𝑛 {𝑚𝑎𝑥{𝑇𝑗}} 

s.t. 

𝐶1 ≥ 𝑝𝛿(1),  

𝐶𝑗 = 𝐶(𝑗−1) + 𝑝𝛿(𝑗), 𝑗 = 2,3, … , 𝑛. 

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝛿(𝑗),        𝑗 = 1,2, … , 𝑛. 

𝑇𝑗 ≥ 0,                       𝑗 = 1,2, … , 𝑛. 
}
 
 
 
 

 
 
 
 

      SP3 

Solving 𝑷 − 𝑷𝒓𝒐𝒃𝒍𝒆𝒎 using BAB  
BAB is one of the most important tools in the 

construction the optimal solution for discrete NP-

hard optimization problems. A BAB algorithm 

searches the complete space of solutions for a given 

problem for the optimal solution. But, Because of 

the exponentially increasing number of possible 

solutions, explicit enumeration is normally 

impossible. So, the use of bounds for the function 

to be minimized (maximized) with the value of the 

current best solution helps the algorithm work on 

parts of the solution space [12].  BAB method is an 

exact method that widely used in MSPs to obtain 

the optimal solution. In this study, we used BAB to 

find the optimal solution for P-Problem.  

BAB with Decomposition Technique  
In order to describe this technique, we have to 

introduce the following theorem for decomposition 

procedure. 

 

Theorem (2): If 𝑉1, 𝑉2, 𝑉3 and 𝑉 are the minimum 

objective function values of the subproblems (SP1), 

(SP2), (SP3) and P-Problem respectively. Then  

𝑉1 + 𝑉2 + 𝑉3 ≤ 𝑉. 

Proof  

Let σ be an optimal schedule to (P) and 

𝑉 = 𝑆1 + 𝑆2 + 𝑆3  
Where  

𝑆1 = ∑ Cσ(j)𝑗∈𝑁 , 𝑆2 = 𝑇𝑚𝑎𝑥(𝜎) and 

 𝑆3 = 𝑅𝐿(𝜎) = 𝑇𝑚𝑎𝑥(𝜎).  
Clearly 𝜎 is feasible schedule to subproblems 

(SP1), (SP2) and (SP3). 

Hence 𝑆1 ≥ 𝑉1, 𝑆2 ≥ 𝑉2 and 𝑆3 ≥ 𝑉3. 

This yields that 

𝑉 = 𝑆1 + 𝑆2 + 𝑆3 ≥ 𝑉1 + 𝑉2 + 𝑉3 . 

From theorem (2) we can derive a new lower bound 

LB for problem (P) to apply new BAB technique. 

Derivation of Upper Bound  
We can find upper bound (UB) for problem (P) 

by using: 

1. 𝑈𝐵1 depends on 𝜎 = SPT rule, then: 

𝑈𝐵1 =∑𝐶𝜎(𝑗) + 𝑅𝐿(𝜎) + 𝑇𝑚𝑎𝑥(𝜎)

𝑛

𝑗=1

 (7) 

2. 𝑈𝐵2 depends on 𝜋 = MST rule, then:  

𝑈𝐵2 =∑𝐶𝜋(𝑗) + 𝑅𝐿(𝜋) + 𝑇𝑚𝑎𝑥(𝜋)

𝑛

𝑗=1

 (8) 

3. 𝑈𝐵3 depends on δ = EDD rule, then: 

𝑈𝐵3 =∑𝐶𝛿(𝑗) + 𝑅𝐿(𝛿) + 𝑇𝑚𝑎𝑥(𝛿)

𝑛

𝑗=1

 (9) 

Then: 
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𝑈𝐵 = 𝑚𝑖𝑛 {𝑈𝐵1, 𝑈𝐵2, 𝑈𝐵3} (10) 

Derivation of Lower Bound 
A lower bound (LB) for problem (P) is based on 

the decomposition of this problem which is 

mentioned in section 4. Now we calculate 𝑉1 to 

be the LB for subproblem (SP1) problem, 𝑉2 to 

be the LB for subproblem (SP2) and 𝑉3 to be the 

LB for subproblem (SP3) then applying theorem 

(2), then we obtain a LB for problem (P). 

For subproblem (SP1), we obtained the LB by 

sorting the jobs by 𝜎 = SPT rule and calculate: 

𝐿𝐵(𝑆𝑃1)  = 


n

j
jC

1
)(  (11) 

For subproblem (SP2), we obtained the LB by 

sorting the jobs by 𝜋 = MST rule and calculate:  

𝐿𝐵(𝑆𝑃2) = 𝑅𝐿(𝜋)    (12) 

For subproblem (SP3), we obtained the LB by 

sorting the jobs by 𝜹 = EDD rule and calculate:  

𝐿𝐵(𝑆𝑃3) = 𝑇𝑚𝑎𝑥(𝛿) (13) 

Then: 

𝐿𝐵 = 𝐿𝐵(𝑆𝑃1) + 𝐿𝐵(𝑆𝑃2) + 𝐿𝐵(𝑆𝑃3) (14) 

Where the LB is the LB for unsequence jobs. 

The suggested new BAB method depends on two 

techniques; the first is represented by using 

Lemma(1) to find the DRs for the problem. 

While the second one is the decomposition 

technique which is introduced by theorem (2). 

The new BAB is called BAB depends on DR and 

decomposition techniques (BABDRDT) is a 

suggested method to obtain optimal solution for 

𝑃 − 𝑃𝑟𝑜𝑏𝑙𝑒𝑚. The BABDRDT algorithm is as 

follows: 

BABDRDT Algorithm 
Step(0):INPUT:𝑛, 𝑝𝑗 and 𝑑𝑗 , 𝑗 = 1,… , 𝑛, 

Calculate the matrix 𝐴(𝐺), 𝑙𝑒𝑣 = 0; 

Step(1):  Calculate UB at the parent node of the 

search tree: by using relation (7),(8) and 

(9). Then the UB can be calculated as 

in relation (10). 

Step(2): l𝑒𝑣 = 𝑙𝑒𝑣 + 1; 
For each node of the search tree of 

BABDRDT i.e. for each partial sequence 

of jobs (say 𝜎), compute LB(𝜎) where 𝜎  is 

the partial sequence in  every node of the 

tree  as follows: LB(𝜎)=cost of sequence 

jobs (𝜎) for the objective functions + cost 

of unsequence jobs obtained by relation 

(14). 
Step(3):  If  LB ≤ UB then branch from it which 

must be  subject to 𝐴(𝐺). 
Step(4): if 𝑙𝑒𝑣 ≤ 𝑛 − 1 goto Step(2). 

Step(5): At the last level of the tree, we get an 

optimal solution for P- problem. 

Step(6):  Stop. 

Comparisons Results for 𝑷 − 𝑷𝒓𝒐𝒃𝒍𝒆𝒎  
For each number of jobs, we generated (5) 

examples, with the  𝑝𝑗 ∈ {1,2, … ,10} and 𝑑𝑗 ∈

{1,2, … ,70} which are generated uniformly under 

condition 𝑑𝑗 ≥ 𝑝𝑗 for 𝑗 = 1, . . , 𝑛. To understand 

the comparisons tables, we introduce the 

following notations which are used in the tables 

of results: 

𝑛 : Number of jobs. 

𝐴𝑣 : Average values of (5) examples. 

𝐺𝑎𝑣: General Average of 𝐴𝑣. 

𝑀𝑇/𝑠 : Mean of CPU-Time for (5) examples per 

second. 

𝑂𝑉 : Optimal Value of P- problem for (5) 

examples. 

𝐵𝑆 : best solution Value of P- problem for (5) 

examples. 

T :  T ∈ [0,1), where T is real number . 

𝐹 : Objective Function of P- problem. 

Table 2. comparison the results between CEM and 

BABDRDT for 𝑛 = 4: 11. 

n 

CEM BABDRDT 

OV TIME OV TIME 

Av(F) MT/s Av(F) MT/s 

4 74.6 T 74.6 T 

5 94.6 T 94.6 T 

6 106.6 T 106.6 T 

7 186.0 T 186.0 T 

8 218.0 T 218.0 T 

9 245.0 T 245.0 T 

10 313.6 6.9 313.6 T 

11 403.0 80.3 403.0 T 

𝑮𝒂𝒗 205.2 10.9 205.2 T 

From Table 2, we notice that the CPU-Time 

between CEM and BABDRDT are the identical but 

for 𝑛 = 10 and 11, CEM is taken long time than 

BABDRDT. 
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Table 3. Comparison the results between BABDRDT 

and TTHM [13] for 𝑛 = 4: 15. 

N 

BABDRDT TTHM 

OV TIME BS TIME 

Av(F) MT/s Av(F) MT/s 

4 74.6 T 76.4 T 

5 94.6 T 100.4 T 

6 106.6 T 113.8 T 

7 186.0 T 194.0 T 

8 218.0 T 228.6 T 

9 245.0 T 253.6 T 

10 313.6 T 317.0 T 

11 403.0 T 412.2 T 

12 299.6 1.6 307.0 T 

13 424.4 5.7 434.2 T 

14 557.4 8.6 560.8 T 

15 639.0 329.5 653.6 T 

𝑮𝒂𝒗 205.2 28.8 304.3 T 

From Table 3, we notice that the results of applying 

BAB(SR) are better than the results of TTHM. 

Table 4. Comparison the results between BABDRDT, 

PSO [14] and BA [14] for 𝑛 = 4: 15. 

n 

BABDRDT PSO BA 

OV TIME BS TIME BS TIME 

Av(F) MT/s Av(F) MT/s Av(F) MT/s 

4 74.6 T 74.6 T 74.6 T 

5 94.6 T 94.6 T 94.6 T 

6 106.6 T 106.6 1.1 106.6 T 

7 186.0 T 186.6 1.2 186.6 T 

8 218.0 T 218.0 1.2 218.0 T 

9 245.0 T 245.0 1.3 245.0 T 

10 313.6 T 313.6 1.5 313.8 T 

11 403.0 T 403.4 1.6 403.3 T 

12 299.6 1.6 299.8 1.7 303.2 T 

13 424.4 5.7 425.0 1.7 430.0 T 

14 557.4 8.6 557.4 1.9 569.2 T 

15 639.0 329.5 639.8 2.0 662.0 T 

𝑮𝒂𝒗 205.2 28.8 296.7 1.3 300.6 T 

We notice from Table 4 the results of applying 

BABDRDT are the best among the results of 

applying PSO and BA, and the results of PSO are 

closed to BABDRDT. 

CONCLUSION AND FUTURE WORK 
In the present study, one of the multiobjectives 

function a single machine (MSP) is considered 

with dominance rules i.e., (1/ / (∑𝐶𝜎𝑗 + 𝑅𝐿 +

𝑇𝑚𝑎𝑥)), we used BAB algorithm with DR to find 

the optimal solution up to 𝑛 = 15 jobs. The 

results of applying BAB algorithm are 

comparison with CEM, TTHM, PSO and BA. 

We proved important theorem as a special case 

of the P- problem.   

We will suggest some problems to be discussed 

and analyzed as future work: 

1. 1/ /𝐿𝑒𝑥(∑𝐶𝑗 + 𝑅𝐿 + 𝑇𝑚𝑎𝑥). 

2. 1/ /𝐿𝑒𝑥(𝑅𝐿 + ∑𝐶𝑗 + 𝑇𝑚𝑎𝑥). 

3. 1/ /𝐿𝑒𝑥(𝑇𝑚𝑎𝑥 + ∑𝐶𝑗 + 𝑅𝐿). 
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