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ABSTRACT

The present article proposes an exact algorithm for the single-machine scheduling problem to
minimize the sum of total completion times, range of lateness and maximum tardiness on a single

machine (1//(2 Coy+ R+ Tmax)), where machine idle time is prohibited. In this paper, one of the

multiobjective function problem for single criteria on just one machine is being studied. To obtain
the optimal solution for the suggested problem, we propose to use Branch and Bound method
(BAB) depending upon some dominance rules. This exact method used new technique to obtain
three upper bounds (UB) and single lower bound (LB). The proposed BAB method proved its
sufficiency by the practical results for n < 15 in a reasonable time. Lastly, we proved a theorem
as special case for our problem.

KEYWORDS: Multiobjective Problem (MOP), Branch and Bound (BAB) method, Upper
Bound (UB), Lower bound (LB), Dominance Rules.
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INTRODUCTION

The Machine Scheduling Problems (MSP)
plays a very important role in most
manufacturing and production systems as well as
in most information processing environment.
The scheduling theory plays a great role in
solving the machine scheduling problem (MSP)
which are work in many fields for instance
production facilities. The basic concept of MSP
is interpreted for each of objectives, which we
called it jobs, an interval of execution on a single
machine, where all constraints are satisfied. The
solution of MSP is called schedule can be
considered a best possible to minimize the
multiobjective function [1]. To improve the
society in manufacturing, we use the production
process to end the goods manufacturing for parts
of them or some components and raw materials.
The following are called the customers'
expectations:
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1. The quality of the product,

2. The safety environmental,

3. The attractive of product,

4. The truthful products..., etc.

So, the decision maker is must study those
expectation well to minimize the cost, so they
always must monitor the performance, the
objectives and the priority levels. There are
many objectives must be satisfied like number of
late jobs, total lateness and completion time. The
single machine, closed shop, flow shop, open
shop and hybrid job shop are as considered as
scheduling [2]. In this study, we introduced one

of single machine problems, so that (1//(zcgj+
RL+TmaX)) is minimized. More specifically, we

consider that the set of jobs N = {1,2,...,n} are
considered on a single machine, each job j €N
has positive integer p; and d; (where p; is the
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processing time of job j and d; is the due date of
job j). Machine idle time is not permitted and the
machine cannot process more than one job at a
time.

There are many papers focus on multi-objective
function single MSP, Ali and Abdul-Kareem
(2017), try to solve multicriteria objective
function for single machine to minimize 1//
(Tmaxr Vimax» 2Vi), they suggested heuristic and
exact method (BAB) to solve their problem [3].
Abdul-Razaq and Motair (2018) they consider
single MSP to minimize the sum of four cost
functions; total completion times, total tardiness,
maximum tardiness, and maximum earliness.
The minimization based on two types, in the first
one they study some special cases including
lexigraphical minimization of problem. In the
second type they minimize the four cost
functions simultaneously and propose algorithm
to find the set of efficient solution for the
discussed problem [4]. Chachan and Jaafar
(2019) present BAB method to minimize the sum
of total completion time, total tardiness, total
earliness, number of tardy jobs and total late
work with unequal release dates. they proposed
six heuristic methods for account upper bound
(UB). Also, to obtain lower bound (LB) to this
problem they use Moore and Lawler’s algorithm.
And some dominance rules were suggested, with
two special cases [5].

Abbas (2019), Study a multi-objectives single
MSP, the objective is to minimize four cost
functions (3Ci+> Ui+ Ti+Tmax) by BAB method
and local search methods (LSMs) and developed
a simple heuristic method to solve the considered
problem [6]. Jawad, Ali and Hasanain (2020),
investigated in their paper some methods to
solve one of the multi-criteria machine
scheduling problems. our discussed problem is
the total completion time and the total earliness
jobs, they solved our problem by proposed some
heuristic methods which provided good results.
They applied (BAB) method with new suggested
upper and lower bounds to solve the discussed
problem, which produced exact results for n <
20 in a reasonable time [7].

The rest of this paper is organized as follows: in
section 2, the multiobjective problem definition
is described, in section 3, Dominance rule for
adjacent jobs is presented. in section 4,
Dominance Rules are presented. In section 5, we
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describe the decomposition of our problem (P),
in section 6, we introduced the BAB method with
DR that we used in this paper to find the optimal
solution, Comparisons Results for P-Problem are
introduced in section 7. Lastly, Conclusion and
Future Work are presented in section 8.

We define the most important objective function
use in our study:

Ly=¢—dj.
Lin = rnjln{Lj}'
Lmax = m]aX{Lj}.

Ry, = Lyax — Lynin-

T; = mjax{Lj,O} and Tpax = m]ax{Tj, 0}.

In this paper, we will take in consideration some
important rules like: Shortest Processing Time

(SPT Rule [8]), Earliest Due Date (EDD rule
[9]), Minimum Slack Time (MST rule [10])

Lemma (1) [11]: For the 1//(XC;,XT;)
problem, if p; < p; and d; < d; then there exists
an optimal sequencing in which job i sequencing
before job j.

Formulation of the Discussion Problem
Mathematically

The single MSP under consideration can be
defined as follows: for a given schedule o =

(1,2,...,n):

V = Min {ZC] + Ry + Tnax} )
s.t.

€1 = Por)

Cj = C(j—l) + pa(j)'j = 2,3, W, n

L] = C] - do-(]),] = 1,2, W, n

Tj = C] - da(j)'] = 1,2, e, N

R.(0) = Limax(0) — Liin(0),

C,T;=20,j=12,..,n. J
The target of P- Problem is to find the best
arrangement of the jobs on a single machine to
minimize (Z Co; + R + Tmax), o €S (where S
is the set of all feasible solutions).

Dominance Rules for Adjacent Jobs

Let F(S) and R(S) represent the total completion
times and range of lateness for a particular
schedule S, Then:

F(S) = Xj=1 Cistiyy
R,(S) = max{ L;(S)} -min {L;(S)},
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Tnax(8) =max{0, Lj}(S)

Hence the problem becomes one of determining
a schedule S which minimizes the following
objective function:

Z(s) =F(s) + Ry(S) + Thnax(S) (1)
Let S be a schedule in which job i appears before
job j. Let S; be a schedule which is obtained
from S by interchanging i and j only. Let Ty be
the sum of the process times of all the jobs
scheduled before jobs i and j and Ty is the same
in both schedules S and S;. Let L;(S) and L;(S)
be the lateness of job i and j in a schedule S and
a similar definition apply to L;(S;) and L;(5;)
for S;.

Let F(S) and F(S;) be the sum of total
completion times of all jobs in schedules S and
S, respectively. Let F, denote the sum of
completion times of all jobs J-(i,j) , then:
F(S) =Fo+ (Tg + p) + (Ts + pi + ;)

F(S1) = Fo+ (Tp +pp) + (Ts +pj + i)

Hence by subtraction the above two relations

F(S) — F(51) = pi — pj.
Let R(S) and R(S;) be the range of lateness
measures of schedules S and S; respectively. If

L=max{L,|k€J—(ij)}and
Ly = min{Ly | k € ] = (i, ))}.

Let T(S) and T(S;) represent the maximum
tardiness measures in schedules S and S;
respectively.

If Tnax(S) = max{Ty | k € ] — (i, /)} and
Tmax(S1) = max{L, | k €] — (i,j)} in either
schedule.

Let max{L,L;(S),L;i(S)}=M

min{Lo, L;(S),L;i(S)} =N

max{L, L;(S1), Li(S))} = W
min{Lo, L;(51),L;i(51)} = Q
Then:
R.(S) = max{L,L;(S),L;(S)}

—min{Lo, L;(S), L;($)} = M — N

R.(Sy) = max{L,L;(5,),L;(S)} -
min{Lo, L;($,),L;(S)} =W —@Q

Now under SZLl' = TB + p; —dl‘, L] = TB +p; +
pj—d;
Under
pi — d;
Then the objective function under the schedule
S and S; will be given by:
Z(S) = F(S) + R(S) + Tinax(S)
=F(8) + (M — N) + Tax (S)
Z(S1) = F(S1) + R(S1) + Trnax(51)
=F(S1) + (W = Q) + Thax(S1)

Sl:Llj = TB +p]—d], Lli = TB +p] +

Then:

ZS) = ZES) = @i=p)+M=W)=(N
- Q) + Tmax(s) - Tmax(sl)

Now by definition:
Li(S) =T +p; - d; 3)
Li($)=Tg+p;+ pj—4q; 4)
Li(S) =Tz +p; - d ®)
Li(S) =Tg+pj+pi—d; (6)

Theorem (1): Given p; > p; then we have the
following cases:
1. Z(S)-Z(51) <p;—p;ifd; <d.
2. Z(S) -Z(51) <p;i —pj + (d; — dj)ifd; > d;.
Proof:
From relations (3-6), we have:
M = max{L, L;(S),L;(S)}
N = min{L’, Li(S), L;(S)}
W =max{L, L;(5:),L;(S1)}
Q = min{L’, L;(51), L;(51)}
Then:
Z(S)-Z(S1) = pi = p; + (M-W) - (N = Q)
+ Tmax(S) - Tmax(sl)
Tmax ) = Tmax(S1)
So we have the following cases:
Case (1): d; < d;
From relation (3-6):
Li(S1) < Li(S) < Li(Sy)
Li(S1) < Li(S) < Li(S1)

min{L;(S1), L;(S1)} = min{L;(S),L;(S)}

i.e., Q=N
Li(S)=Ts+pi+ pj —dj<Li(S1) =T +p; +
pi — d;
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Li(S) < Li(51)

So max{L;(S),L;(S)} < max{L;(S;),L;j(5)}

i.e., M <W.

So from relation (2) we obtain Z(S)-Z(S;) <

bi—- pj

Z(8)-Z(S1) =pi- pj + M-W)-(N—-Q) +

Tmax (S) - Tmax (Sl)

Z(S)-Z(S1) < (pi —pj)

Case (2): d; > d;

min{ L;(S1), L;(S;)} < min{ L;(S), L;(S)}

i.e., Q<N
M-W =max{L,L;(S),L;(S)}-
max{L,L;(S;), L;(S)}

Li($1) < Li($1)

L;($)> Li(S)

M-W = max{L,L;(S)}-max{L,L;(S;)}

L;i($)> Li(51)

1. L < Li(S) < Li(S), then M —W = L;i(S) —
Li(S))=Tg+ pi+pj—dj — (Tg+p;j +p; —
di) = di — dj

2. Li(S) <L L(S)=M-W=Li(S)-L <
L;(S)- Li(Sy).

3.Li(S)< L) <L=M-W=L-L=0.

Therefore M — W is not greater than d;- d;,

Hence (2) Z(S)-Z(51) < (pi- pj) + (d;i- dp).

The following example explains case (1) of

theorem (1).

Example (1):
1 2 3 4 5
pj | 2 3 5 4 6
d, | 3 5 6 8 7
Let’s choose S = (1, 2,3,4,5), letJ; = J; and
Ji =Ju S1=(1,2,43,5).
For sequence S we have:
sljl1]2 ]3] 4]c-s
d; 3 5 6 8 7
C; | 2 | 5 10| 14| 20
L | -1 0 4 6 | 13
T; 0 0 6 | 13
For sequence S; we have:
s;ljl 1] 2] 4] 3]s
d; 3 5 8 6 7
C; | 2|5 ]9 |14]2
L; -1 0 1 8 | 13

59

| T, [oJof1][8[13]

Lj(Sl) =1<1Li(S5)=8

max{L;(S),L;(S)} < max{L;(S1),L;(5,)}

— max{4, 6} < max{1, 8}

min{ L;(S;),L;(S))} < min{ L;(S), L;(S)}

min{1, 8} < min{4, 6}

Z(S)=F(S) + R.(S) + Typex(S) and Z(S;) =

F(Sl) + RL(Sl) + Tmax(Sl)-

Then Z(S) =51+14+13 =78and Z(S;) =

50+ 14+ 13 = 77.

Z(S)—Z(Sl) =78-77=1 Spl - pj =5-4
=1.

This means:

Z(S) < Z(Sy) if p; > pjand d; < d;.

The following example explains case (2) of
theorem (1).

Example (1):
1 2 3 4 5
d; 3 5 8 6 7

Let choose S = (1,2,3,4,5), let J; = Jzand J; =
]4,, Sl = (1, 2, 4‘,3, 5)
For sequence S we have:

sljl1]2[3]4a]5
p; 2 3 5 4 6
d; 3 5 8 6 7
C; 2 5 10| 14 | 20
Ly | -1 |0 2 8 | 13
T; 0 0 2 8 | 13

For sequence S; we have:

s;ljil1]2]4]3]s+s
pj 2 3 4 5 5
d; 3 5 6 8 7
C; 2 5 9 | 14 | 20
L 110 3 6 | 13
T; 0 0 3 6 | 13

Z(S) =F(S)+R.(S) + Thax(S)and Z(Sy) =
F(Sl) + RL(Sl) + Tmax(Sl)-

Then Z(S) =51+14+ 13 =78and
Z(S1)=50+14+13 =77.

pi —pj=5—-4=1
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Then pPi — p] - (dl - d]) =3
2(5)-2(S) =78-77=1<1+2=3.
This means: Z(S) < Z(S,)

Pi > p] and di > d]

Dominance Rules

Dominance Rules (DR’s) play a good role to obtain
a good and fast approach to reducing the current
sequence to be used specially in BAB method (for
more details see [14]).

Decomposition of P — Problem

The P — Problem can be decomposed into three
subproblems (SP1), (SP2) and (SPs), let these
subproblems be as follows:

v, = Min {3C;} )
S.t.
C1 2 Pory SP1
C‘.I' = C(]—l) + po-(]) ,j = 2,3, e, n |
=0, j=12,..,n )
V, = Min{R,} \
= min{Lmax - Lmin}
S.t.
€1 2 Pray
Cj = Cij-v) + Prjy J > SP2
=23,..,1n
L] = C} - dTL’(])’ ] = 1,2, o, N
Lmax = Lmin' )
C; =0, j=12,..,n
Vs = Min {Tpax} )
= min {max{Tj}}
S.t.
C1 2 psqy > SP3
Cj = C(]—l) + pcg(]),] = 2,3, e, N
T, = C — dg(j), j=12,..,n
T, =0, j=12,..,n )

Solving P — Problem using BAB

BAB is one of the most important tools in the
construction the optimal solution for discrete NP-
hard optimization problems. A BAB algorithm
searches the complete space of solutions for a given
problem for the optimal solution. But, Because of
the exponentially increasing number of possible
solutions, explicit enumeration is normally

impossible. So, the use of bounds for the function
to be minimized (maximized) with the value of the
current best solution helps the algorithm work on
parts of the solution space [12]. BAB method is an
exact method that widely used in MSPs to obtain
the optimal solution. In this study, we used BAB to
find the optimal solution for P-Problem.

BAB with Decomposition Technique

In order to describe this technique, we have to
introduce the following theorem for decomposition
procedure.

Theorem (2): If V;,V,, V5 and V are the minimum
objective function values of the subproblems (SP1),
(SP2), (SP3) and P-Problem respectively. Then
Vi+V,+V, < V.

Proof

Let o be an optimal schedule to (P) and

V=5 +S5+S5;

Where

S1 = ZjeN Co@)s S2 = max(0) and

S; = R, (0) = Tmax(o).

Clearly o is feasible schedule to subproblems
(SP1), (SP2) and (SPs).

Hence S; > V;,S, =V, and S5 > V5.

This yields that

V=S8 +S,+S>2V,+V,+V;.

From theorem (2) we can derive a new lower bound
LB for problem (P) to apply new BAB technique.

Derivation of Upper Bound
We can find upper bound (UB) for problem (P)
by using:

1. UB, depends on o = SPT rule, then:

n
UB1 ZZCO-(]) +RL(O-)+Tmax(O-) (7)
j=1

2. UB, depends on r = MST rule, then:

n
UB, = ) Cuy + Ru() + Tnu(®) @
=1

3. UB5 depends on 6 = EDD rule, then:

n
UBy =) Copy + Ru(®) + Tpax(®) O
j=1

Then:
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UB = min {UB;, UB,, UB3} (10)
Derivation of Lower Bound

A lower bound (LB) for problem (P) is based on
the decomposition of this problem which is
mentioned in section 4. Now we calculate V; to
be the LB for subproblem (SP1) problem, V, to
be the LB for subproblem (SP2) and V; to be the
LB for subproblem (SP3) then applying theorem
(2), then we obtain a LB for problem (P).

For subproblem (SP1), we obtained the LB by
sorting the jobs by ¢ = SPT rule and calculate:

n
LB(SP)) = Y C,, (11)
=1

For subproblem (SP2), we obtained the LB by
sorting the jobs by m = MST rule and calculate:

LB(SP,) = R,(n) (12)

For subproblem (SP3), we obtained the LB by
sorting the jobs by 8 = EDD rule and calculate:

LB(SP3) = Trnax(6) (13)
Then:
LB = LB(SP;) + LB(SP,) + LB(SP;) (14)

Where the LB is the LB for unsequence jobs.

The suggested new BAB method depends on two
techniques; the first is represented by using
Lemma(l) to find the DRs for the problem.
While the second one is the decomposition
technique which is introduced by theorem (2).
The new BAB is called BAB depends on DR and
decomposition techniques (BABDRDT) is a
suggested method to obtain optimal solution for
P — Problem. The BABDRDT algorithm is as
follows:

BABDRDT Algorithm
Step(0):INPUT:n,pjand dj,j = 1, ...
Calculate the matrix A(G), lev = 0;
Step(1): Calculate UB at the parent node of the
search tree: by using relation (7),(8) and
(9). Then the UB can be calculated as
in relation (10).
Step(2): lev = lev + 1;
For each node of the search tree of
BABDRDT i.e. for each partial sequence
of jobs (say o), compute LB(c) where o is
the partial sequence in every node of the

1,
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tree as follows: LB(o)=cost of sequence
jobs (o) for the objective functions + cost
of unsequence jobs obtained by relation
(14).

Step(3): If LB < UB then branch from it which

must be subject to A(G).

Step(4): if lev < n — 1 goto Step(2).

Step(5): At the last level of the tree, we get an
optimal solution for P- problem.

Step(6): Stop.

Comparisons Results for P — Problem

For each number of jobs, we generated (5)
examples, with the p; € {1,2,..,10} and d; €
{1,2, ...,70} which are generated uniformly under
condition d; > p; for j = 1,..,n. To understand
the comparisons tables, we introduce the
following notations which are used in the tables
of results:

n : Number of jobs.

Av : Average values of (5) examples.

Gav: General Average of Av.

MT /s : Mean of CPU-Time for (5) examples per

second.

oV . Optimal Value of P- problem for (5)
examples.

BS : best solution Value of P- problem for (5)
examples.

T: T€[0,1), where T is real number .
F : Objective Function of P- problem.

Table 2. comparison the results between CEM and
BABDRDT for n = 4: 11.

CEM BABDRDT

n oV TIME oV TIME

Av(F) MT/s Av(F) MT/s
4 74.6 T 74.6 T
5 94.6 T 94.6 T
6 106.6 T 106.6 T
7 186.0 T 186.0 T
8 218.0 T 218.0 T
9 245.0 T 245.0 T
10 313.6 6.9 313.6 T
11 403.0 80.3 403.0 T
Gav | 2052 10.9 205.2 T

From Table 2, we notice that the CPU-Time
between CEM and BABDRDT are the identical but
for n = 10 and 11, CEM is taken long time than
BABDRDT.
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Table 3. Comparison the results between BABDRDT
and TTHM [13] for n = 4:15.

BABDRDT TTHM

N oV TIME BS TIME

Av(F) MT/s Av(F) MT/s
4 74.6 T 76.4 T
5 94.6 T 100.4 T
6 106.6 T 113.8 T
7 186.0 T 194.0 T
8 218.0 T 228.6 T
9 245.0 T 253.6 T
10 3136 T 317.0 T
11 403.0 T 412.2 T
12 299.6 1.6 307.0 T
13 424.4 5.7 434.2 T
14 557.4 8.6 560.8 T
15 639.0 329.5 653.6 T
Gav 205.2 28.8 304.3 T

From Table 3, we notice that the results of applying
BAB(SR) are better than the results of TTHM.

Table 4. Comparison the results between BABDRDT,
PSO [14] and BA [14] for n = 4: 15.

BABDRDT PSO BA

n [ ov [TIME| BS [TIME| BS [TIME

Av(F) | MT/s |Av(F) | MT/s [Av(F) | MTIs
4 | 746 | T | 746 | T | 746 | T
5 | 946 | T | 946 | T | 946 | T
6 | 1066 | T |1066| 1.1 |1066| T
7 | 1860 | T |1866| 1.2 |1866| T
8 | 2180 | T |2180| 1.2 |2180| T
9 | 2450 | T |2450| 13 |2450| T
10 | 3136 | T |[3136| 15 |3138| T
11 | 4030 | T [4034| 16 |4033| T
12 | 2996 | 16 [299.8| 17 [3032| T
13 | 4244 | 57 |4250| 17 |4300| T
14 | 5574 | 86 |[557.4| 19 |569.2| T
15 | 639.0 | 3295 [639.8| 20 |6620| T
Gav | 2052 | 288 |296.7| 13 [3006| T

We notice from Table 4 the results of applying
BABDRDT are the best among the results of
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applying PSO and BA, and the results of PSO are
closed to BABDRDT.

CONCLUSION AND FUTURE WORK
In the present study, one of the multiobjectives
function a single machine (MSP) is considered

with dominance rules i.e., (1//(zcgj+RL+

Tmax)>, we used BAB algorithm with DR to find

the optimal solution up to n =15 jobs. The
results of applying BAB algorithm are
comparison with CEM, TTHM, PSO and BA.
We proved important theorem as a special case
of the P- problem.

We will suggest some problems to be discussed
and analyzed as future work:

1. 1/ /Lex(XC + Ry + Tyax).
2. 1/ /Lex(R, + X C; + Trax)-
3. 1/ /Lex(Tpax + X Cj + Ry).
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