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ABSTRACT

In this paper, Bernoulli's polynomials approach is employed for solving approximately linear
Fractional Fredholm integro-differential equations via Petrove-Glerkain method. The Fractional
derivatives are described in the sense Caputo. The approximate solution is compared with the
exact solution to confirm the validity and efficiency of the method to a same as before. Some

illustrative examples are presented.
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INTRODUCTION

Fractional calculus is an important branch of
applied mathematics, the fractional differential
equations involving the Caputo and other fractional
derivatives, which are a generalization of classical
differential equations, have attracted widespread
attention. This type of differentiation and
integration may be considered as a generalization
to the useful definition of differentiation and
integration analytically, and hence finding accurate
numerical solutions [1]. Fractional differential
equations involving the Caputo and other fractional

be modeled by fractional
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solutions to fractional differential equations have
been explored [3,4].

Furthermore, a few strategies have as of late been
proposed for looking for solutions counting
numerical solution and approximate solution such
as the Homotopy perturbation method HPM and
variational iteration method VIM [5], by least
squares method and shifted Chebyshev
polynomial[6], Taylor expansion method[7]sand a
time-fractional equation via the quintic non-
polynomial spline[8].

The numerical solution of the following linear

derivatives, which are a generalization of classical ~ fractional Integro-differential problem is the
differential equations, have pulled in far reaching ~ subject of this paper:
consideration [2]. Many numerous problems can 1

Integro-differential Dy u(x) = f(x) + f k (x,t)u(t)dt 1)
equations from varied sciences and engineering 0
applications. Besides most issues which cannot be with the following additional requirements:
unraveled, utilizing numerical strategies, will be w(0)= B n—1<a<nneN, @)

exceptionally accommodating.

As of late, a few numerical strategies to unravel
linear fractional Integro- differential conditions
(LFFIDEs) have been given and cite to this
reference.  The existence and uniqueness of
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where D u(x) indicates the «a the Caputo
fractional derivative of u(x); f(x), K(x, t) are given
functions, x and t are real variables varying in the
interval [a, b], and u(x) is the unknown function to
be determined..
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In this paper, we show how the approximately
methods which are based on the petrove-Galerkain
method (PGM) can be used to solve (LFVIDE's)
to obtain approximate solutions via the Bernoulli
bases.

1. Basic Definitions of Fractional Derivatives
Some essential concepts and properties of
fractional calculus theory are provided in this
section, which are required for the formulation of
the issue.
Definition (1.1) [1]:
A real function f(t), t > 0, is said to be in the space
C, ., H€E R, if there exists a real number P >, such
that f(t)ntPh, (t), where f;(t) € (0,), and it is
said to be in space C}' if and only if f*C,,n € N .
Definition (1.2) [1]:
Let f € C"™1,m € N U {0}. Then the caputo
fractional derivatives of f(x) is defined as:
Df(x) =
M-efmiym—1<a<mme N
D™f(x)
Dx™
Hence , we have following properties

1) JYVf =]%Yf a,v>0,feCyu>0

Ay — r(y+1) aty _
2) J%x = T@iriD x**Y, a>0,y>-1,x>0
3) J*D*f(x) = f(x) — Xko f4(07)

oOom—-1<a<m
4) JDef(x)=f(x),x>0m—1<a<m
5) D*C =0, C is constant

0 PBE Ny<|a]
r(g+1) B-a

F(ﬁ—d+1)x ﬂ € NO 'ﬁ = [a]
where [«] denoted the smallest integer greater
than or egual to a and Ny{0,1,2, -+ }

, a=m

k
X
—,Xx >
k!

D%xP =

2. The Derivative for Bernoulli Polynomials
The unknown function appears as a linear
combination of defined basic functions in the
collocation Bernoulli technique.

Polynomials, orthogonal functions, wavelets
functions, and spline approximation are frequently
used as basic functions.

Unknown coefficients are items that must be
computed to obtain a rough solution.

Bernoulli polynomials are polynomials that have
Bernoulli coefficients.

te” o 3
7 = 20 Ba(D) ®3)

Bernoulli polynomials have an explicit formula
that is written as” and cite this sentence.
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Ba(®) = Ty Zieo(~D* () (@ +

k)™ or

B = ) () Buict* (4)
k=0

The few Bernoulli polynomials can be expressed
as:

BO(T)Z1,31(‘[):‘[—%,32(‘[):‘[2—‘[-{-%
_.3_32,1
Bs;(x) =7 STo T ,,1
B — 4_2 3 2__'
(D) =7 5 T +ST 310
_.5_5 4,53 1
B:(t) =7 ST +3T T

_ . 6_2.5,54_1 2 1
Bes(t) =1°—31 +oT ST

3. Algorithm of (Pgm) for solving (Lffides)
via Bernoulli basis

In this section, the Petrov-Galerkian method

(PGM) is used to investigate the approximation

solution of the linear Fredholm fractional integro-

differential eq.(1) using Bernoulli polynomials of

six degrees in the interval [0,1].

Dfu(x) = f(x) + [} k(x, Hu(t)dt ,

u(0) =B ,x € [a,b] (5)
Our approach being by taking the fractional
integration to both side of eq.(5) we get

u(x) =u(0) + I“f(xz
+ 1“(] k(x,t)u(t)dt

To approximate solution of eq.(5), we use the
Bernoulli polynomials basis on [a,b] as:

u(x) = Xiso aibin(x) (7
Where (a;,i = 0,1,2, ....,n) are unknown constant
to be determined substituting eq.(7) in to eq.(6),we
get:

> i) = u(®) + 17(x)
i=0

(6)

b n (8)
+1a( k(x, t) aibi_n(t)d
[0,
Hence:
n b L
Do abinl) = 1 ([ kDY a0 g

=0
=u(0) +1%f(x)
In the next step, apply (PGM) for eq.(5) is a
numerical method for finding u(x) =
Yisoaib;n(x) € x,,. Such that a; is unknown and
must be determined from eq. (9) which can be
written as:
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n
< Z a;b; (x)
i=0

- Ia(f k(x, t)zal ln(t)dt' ]n

< u(0)+1"‘f(X), in > (10)
Thus

f{Z —0aibin(x) —

I“(f k(x,t) X agb;n (£)dt}b;

f {u(0) + 1%f (x)dx}b;,, (11)

Then, eq.(11) is equivalent to linear system can be
formed as follows:

L(Xal)_f {Z Oabln(x)_
G (f k(x, £) B0 iy ()t} by,

mj:fo [u(0) + I%f(x)dx]b},
We can represent the system eq.(12) as a matrix
form:

(12)

LA=M (13)
Where
1 . 1 .
Jy L(x,a0)bgp dt Jo L(x,an)bg, dt
L= : : )
1 . 1 .
Jo L(x,a0)by,, dt Jo L(x,ap)byp dt
Qo mo
A= a:l ’M: n:ll (14)
an My,

Then solving the eq.(14) to calculate the value a;

4. Application Examples on LFFIDE by
(PGM)
Consider we have LFFIDE

DUu(x) = €% +0.2021509 — = [ u(t) dt
Initial value u(0)= 1
The exact solution is given as: u(x) = €*

1 1
L(x,a0) = [;{(ao + ar(x =) + az(x* —x +
1 3 1 2 1
Dt as(x® —Sx? +-x) + - 19(f; (a0 + an (t -
D+ ay(t? — t+ DFa(td — 2t2 +2))dt} dx *
1
1 1
L(x,a0) = [j{(ao + as(x =) + az(x* —x +
l) + az(x3 —Ex2 +lx) +i 1%(tay +
t? t3 t* 3
(?"t) ! (?“Jf f) (55

%) a3]0}dx* 1

=f1{(a0 + a;(x —l) + az(x2 —x +1) +
apldx x 1

as(x3 ——x + = x) +
i6 Z tZ _ i

zPe 1+Z_Oz—e (zy®2z)

Case (1) where a € [0,1] choose it randomly

When a = 1 then

L(x, ao):fol{(ao +a,(x — %) +a,(x* —x+

r( +1)

1 3_3,2 l) 2
6)+a3 (x X tox +17xa0}dx*1

_ x? x? 1 x3  x?
—(x+5)ag+(;—zzx)al+(?—7+
1 r_ v, v 1
6x)a2+(4 2+4)a3]0
=1.0589 q,

1 1
L(x,a)=[, {(ao + as(x — Dt ap(x? —x +
1 3_3,2,1 2 _1
6)+a3 (x SX°+ 2x) + xap}dx * (x 2)

2x3 | 8x? «x x3 x? 1 x*

= (—+—-9ag+ (———+—X)CL1 + (——
51 17 2 3 2 4 4

x3 x2 1 ) x5 x*  5x3  «x? 1

7 Ty ) et oy oy —ask

=0.0098a, + 0.0833a, — 0.0083a;
1 1
L(x,a)=f{(a0 + a1 (x =) + az(x* —x +

1 3_3,2,1 2 2 _
)+a3(x SX +2x)+17xa0}dx*(x x +

2
Sy C

3¢ 17 .
ix)a1+(x—— +4i——+—x) 4 (5=
1% 4 53 2 6
x> 13x®  x* X 1
T +24) a3]o
=0.0055a,

L(x,a5)= [1{(ao + ay(x —3) + ay(x? —x +
D+as <x3 - %xz + %x) + %xao}dx * (x3 —

=x% +-x)
2 2
2x5  7x*  49x 1 5 x*  5x3
=(=— - +—x2)a0+(—— +—=-
85 34 102 4 5 2 12
2 6 5 4 3 2
x x x 13x x x
—)a1+(—— + ——+—)a2+
8 6 2 24 4 24
x7  x%  13x5  3x*  xB 1
ERES - t5)alo
7 2 20 8 12

=—0.0009a, — 0.0083a, + 0.0011a;
= o) + I(FED] Qi
m; = [[[1 + I1%(€% +0.2022)] * 1 dx
mo = [A[1+ 1 (12022 4+ x + 222 + 12)] «
1dx

1 1.2022x%  r(2)x%tt  r3)x%t?
Mo = fO 1+ r(a+1) r(a+2) = 2r(a+3)
F(4)xa+3
6I'(a+4)
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a=1
mo = [, (1 + 1.2022x + 0.5x% + 0.1666x> +

0.0416x%)dx

my = x + 0.6011x% + 0.1666x3 + 0.0416x* +

0.0083x5]3
my = 1.8176

my = [ (1+ 1.2022x + 0.5x% + 0.1666x +

0.0416x*) * (x — 2) dx
my = —0.5x + 0.1994x2 + 0.3174x3 +

0.1041x* + 0.0291x5 + 0.0069x°]}
m; = 0.1569

m, = [)(1 +1.2022x + 0.5x% + 0.1666x° +
0.0416x%) = (xz —x+ %) dx
m, = 0.1666x — 0.3998x2 — 0.0396x3 +

0.1825x* + 0.0681x5 + 0.0208x6 +
0.0059x7]3
m, = 0.0045

m, = [)(1 + 1.2022x + 0.5x% + 0.1666x° +

0.0416x*) * (x3 — %xz + %x)dx

m, = 0.25x2 — 0.2996x3 — 0.1383x* +
0.1071x5 + 0.0451x° + 0.0148x7 +
0.0052x8]3

m, = —0.0157,
1.0589 0 0 0 1[@
0.0098  0.0833 0 -—0.0083 ||a
0 0 0.0055 0 ||as
—0.0009 —0.0083 0 0.0011 |a,
1.8176
0.1569
0.0045
—0.0157

ap = 1.7165 , a; = 1.6094, a, = 0.8182,

a; = —0.7245

Thus, the approximate solution of equation, when
a = 1 becomes:

Y(x)=1.7165 + 1.6094 (x — 3) + 0.8182 (x? -
x + l) —0.7245(x3 —3x2 + 2x).
6 2 2

In the same way, we find a=0.5 and a= 0.8
As shown in the following table 1.

Table 1. Numerical results of example 1.

Exact Approximate solution

X u(x) = ex a=1 Absolute Error a=0.5 Absolute Error a=0.8 Absolute Error
0.1 1.105171 1.109332 0.004161 1.342628 0.237457 1.181397 0076226
0.2 1.221402 1.204304 0.017098 1.557014 0.335612 1.298135 0.076733
0.3 1.349858 1.328681 0.021177 1.747256 0.397398 1.446381 0.096523
0.4 1.491824 1.478116 0.013708 1.923521 0.431697 1.619965 0.128141
0.5 1.648721 1.648262 0.000459 2.095978 0.447257 1.812715 0.163994
0.6 1.822118 1.834772 0.012654 2.274796 0.452678 2.018458 0.196340
0.7 2.013752 2.031125 0.017373 2.470141 0.456389 2.231024 0.217272
0.8 2.225540 2.239496 0.013956 2.692183 0.466643 2.444240 0.218700
0.9 2.459903 2.449016 0.010887 2.951089 0.491186 2.651936 0.192033
1.0 2.718281 2.657512 0.060769 3.257028 0.538747 2.847940 0.129659

i [ 5. Application example on L-FFIDE by

(i)

s approximation a=1
—HE— approximation a=0.5
—©— approximation a=0.8

r r r
.1 0.2 0.3 0.4

:
0.5

Xi

:
0.6

r
0.7

r r
0.8 0.9

Figure 1. Numerical results of example 1.

1
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Petrov-Galerkin method
Consider L-FFIDE

D%u(x) =cosx — 0.000051 + éfol u(t) dt
with initial condition u(0)=0
And the exact solution: u(x) = sinx

By using PGM method, we can solve the above
example as follows:
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Table 2. Numerical results of example 2.

Exact Approximate solution
X u(x) = sinx a=1 Error a=0.5 Error a=0.8 Error
0.1 0.099834 0.103037 0.003203 0.438074 0.338240 0.106441 0.006607
0.2 0.198669 0.239245 0.040576 0.637547 0.438878 0.255734 0.057065
0.3 0.295521 0.364623 0.069102 0.794284 0.498763 0.389522 0.094001
0.4 0.389419 0.479993 0.090574 0.908283 0.518864 0.508942 0.119523
0.5 0.479428 0.586177 0.106749 0.993671 0.514243 0.615131 0.135703
0.6 0.564648 0.683997 0.119349 1.055157 0.490509 0.709226 0.144578
0.7 0.644234 0.774275 0.130041 1.099804 0.455570 0.792364 0.148130
0.8 0.717398 0.857833 0.140435 1.134676 0.417278 0.865682 0.148284
0.9 0.783421 0.935493 0.152069 1.166836 0.383415 0.930317 0.146896
1.0 0.841667 1.008077 0.166410 1.203346 0.361679 0.987406 0.145739
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