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The dynamical system is the concept used to describe the behavior of several phenomena in our 

daily life. It comes in two types; linear and nonlinear. Two essential properties characterize the 

latter, stability and chaos, which in turn are classified into two categories, continuous and discrete, 

for the models that exhibiting chaotic behavior, which sometimes needs to be stabilized and 

synchronized. There are various approaches for such a purpose. In this work, the chaotic behavior 

of the 2D-logistic map is stabilized without adding any control parameters. This approach is 

considered efficient for models whose analytic solutions are challenging to find. Moreover, the 

modulus for the Jacobian matrix eigenvalues is greater than unity. Finally, the feasibility and 

effectiveness of this stabilizing method are demonstrated through some Numerical analysis. 
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 الخلاصة

النظام الديناميكي هو المفهوم المستخدم لوصف سلوك العديد من الظواهر في حياتنا اليومية. يأتي في نوعين؛ خطي وغير خطي. 

للنماذج هناك خاصيتان أساسيتان تميزان الأخير، الاستقرار والفوضى، والتي يتم تصنيفها بدورها إلى فئتين، مستمرة ومنفصلة، 

ً التي تظهر سلوكًا فوضوي ، تم مختلفة لهذا الغرض. في هذا العملوالتي تحتاج أحياناً إلى الاستقرار والمزامنة. هناك طرق ، ا

تثبيت السلوك الفوضوي للخريطة اللوجستية ثنائية الأبعاد دون إضافة أي معلمات تحكم. يعتبر هذا النهج فعالاً للنماذج التي 

، اً فة يعقوبي أكبر من الوحدة. أخيرلمصفو eigenvaluesإن معامل قيم يصعب العثور على حلولها التحليلية. علاوة على ذلك، ف

 تم توضيح جدوى وفعالية طريقة التثبيت هذه من خلال بعض التحليلات العددية.

INTRODUCTION 
The mathematical model is used in many 

disciplines to describe the behavior of a system and 

the effect of its component. There are two types of 

mathematical models; continuous and discrete. The 

formal is described by differential equations, where 

difference equations describe the latter. Since the 

dynamic of these systems is complex, it attracts 

scholarly attention. We refer the reader to see [1-3] 

as examples of the continuous type. 

On the other hand, discrete-time dynamical 

systems or difference equations have been 

increasingly used to model the biological and 

ecological systems for which there is a time 

interval between each measurement [4-5]. This 

modeling approach is made using iterative maps. 

Iterative maps are an essential part of nonlinear 

systems dynamics. They allow us to take the output 

of the system's previous state and fit it back to the 

next iteration. However, in general, it is not easy to 

solve explicitly a system of difference equations.  

Stability theory in the field of discrete-time 

dynamical systems deals with the stability of 

solutions of difference equations and orbits of 

dynamical systems under small perturbations of 

initial conditions. From a dynamical systems point 

of view, bifurcation theory addresses the changes 

in the qualitative behavior or topological structure 

of a family of difference equations solution [6-7].  

Chaos theory is a branch of dynamical systems that 

focuses on studying its chaotic states, which are 

often governed by deterministic laws. Its solutions 

demonstrate irregular behavior and are highly 

sensitive to initial conditions [8]. The discrete-time 

chaotic system has various applications in almost 

most applied sciences branches. This is due to its 

ability to describe the behavior of several situations 
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in real life. For example, most creatures that 

reproduce once a year like a fish, plant, etc. These 

applications included but were not limited to, are in 

biology and medicine [9], engineering [10-11], 

economics and finance [12], cryptography and 

security [14-18], and many others. Although 

chaotic behavior is essential in some applications, 

the impossibility of long-term prediction and high 

sensitivity to the initial conditions, and the random 

influence are still reasons for avoiding such 

behavior. To make such systems behave as desired 

this required introduction of external forces to 

withstand the perturbations and make the system 

trajectory skew towards stability. There are many 

numerical and analytical methods for stabilizing 

the discrete chaotic systems behavior; we refer the 

reader to see [19-21]. In this work, the hyperchaotic 

behavior of the 2D-Logistic map [22] is stabilized 

to a fixed point without using any controlling 

variables or any prior analytical knowledge. The 

classical formwork of 2D-Logistic map in discrete 

time has the form [22]: 

 𝑥𝑖+1 = (1 − 𝜇)𝑥𝑖 + 4𝜇𝑦𝑖(1 − 𝑦𝑖) 

𝑦𝑖+1 = (1 − 𝜇)𝑦𝑖 + 4𝜇𝑥𝑖(1 − 𝑥𝑖) 
(1) 

where 𝑥𝑖  represent the size of the population of a 

certain species at time 𝑖 and 𝜇 be the growth rate of 

the population from one generation to another, such 

that 0 < 𝜇 < 1.  
This paper organized as follows: Section 2 presents 

the analytical study of the 2D-Logistic map. The 

dynamic behavior of the 2D-Logistic map is 

discussed in section 3. Section 4 introduced the 

general strategy to control discrete chaotic systems. 

Section 5 presents the numerical stabilization 

method for the 2D-Logistic map. The analytical 

result is proved numerically led in section 6. 

Finally, section 7 concluded the paper. 

Analytical analysis of 2d-logistic map 
The fixed points of the discrete–time system are 

determined, and the stability conditions are 

examined. The possible fixed points are obtained 

by solving system of equations. 

 𝑥𝑖+1 = (1 − 𝜇)𝑥𝑖 + 4𝜇𝑦𝑖(1 − 𝑦𝑖) = 𝑓1(𝑥𝑖, 𝑦𝑖) 

𝑦𝑖+1 = (1 − 𝜇)𝑦𝑖 + 4𝜇𝑥𝑖(1 − 𝑥𝑖) = 𝑓2(𝑥𝑖, 𝑦𝑖) 
(2) 

A simple calculation shows that system (2) has 

three fixed points. The Jacobain matrix of (2) is: 

𝐽 = [
1 − 𝑢 4𝑢(1 − 2𝑦)

4𝑢(1 − 2𝑥) 1 − 𝑢
] 

Solving this system (2) we get the following 

equilibrium points 𝐸0 = (0,0) & 𝐸1 = (
3

4
,
3

4
), 

𝐸∗ = (𝑥∗, 𝑦∗) The Jacobain matrix at each fixed 

point is calculated and as follows 

At the point, 𝐸0 = (0,0), we have: 

JE0 = [
1 − μ 4μ
4μ (1 − μ)

] 

The eigenvalues of 𝐸0 are λ1 = (1 + 3𝜇) and λ2 =
(1 − 5𝜇). Hence, by a simple calculation, the local 

dynamics of fixed point 𝐸0 is shown. The local 

dynamics of 𝐸0 illustrated in:  

Proposition 1: For the fixed 𝐸0, the following 

station holds true:- 

𝐸0 is a 𝑠𝑜𝑢𝑟𝑐𝑒 point if and only if |𝜆1| > 1 for 𝜇 >
0, and |𝜆2| > 1 for 𝜇 > 0. 

𝐸0 is a local asymptotic stable point if and only if 

|𝜆1|  < 1 𝑓𝑜𝑟 𝜇 < 0, & |𝜆2|  < 1 𝑓𝑜𝑟 0 < 𝜇 <
0.4. 
𝐸0 is a saddle point if and only for |𝜆1|  < 1 for 𝜇 <
0 and |𝜆2| > 1 for 𝜇 > 0.4. 
𝐸0 is a non-hyperbolic point if and only if |𝜆2| =
1, 𝑓𝑜𝑟 𝜇 = 0.4 .  

At 𝐸1 = (
3

4
,
3

4
) we have, 𝐽𝐸1 = [

1 − 𝜇 −2𝜇
−2𝜇 1 − 𝜇

] 

The eigenvalues of 𝐸1 are; 𝜆1 = (1 − 3𝜇) and 𝜆2 =
(1 + 𝜇). Therefore, the local dynamics of 𝐸1 is 

illustrated in Proposition 2. 

Proposition 2: For the fixed point 𝐸1, the following 

station holds. 

𝐸1 is a 𝑠𝑜𝑢𝑟𝑐𝑒 point if and only |𝜆1| > 1 for 𝜇 <
0 , 𝑎𝑛𝑑 |𝜆2| > 1 for 𝜇 > 0. 

𝐸1 is a local asymptotic stable if and only if |𝜆1|  <
1 𝑓𝑜𝑟 𝜇 < 0 , & |𝜆2|  < 1 𝑓𝑜𝑟 0 < 𝜇 < 0.4. 
𝐸1 is saddle point if and only if |𝜆1|  > 1 for 𝜇 >
0.6, and |𝜆2|  < 1 for 𝜇 < 0. 
𝐸1 is a non-hyperbolic point if and only if 𝜇 =
0.667 for |𝜆1| = 1. 

 

For the fixed point 𝐸∗ = (𝑥∗, 𝑦∗), the Jacobain 

matrix of 2 is 

 𝐽𝐸∗ = [
1 − 𝑢 4𝑢(1 − 2𝑦∗)

4𝑢(1 − 2𝑥∗) 1 − 𝑢
] 

The complex pair eigenvalues of 𝐸∗ are 𝜆1 =
(1 − 𝜇) + 2𝜇𝑖 , 𝜆2 = (1 − 𝜇) − 2𝜇𝑖 where 𝑥∗ =
5+√5

8
 , 𝑦∗ =

5−√5

8
 

It is well known that the eigenvalue of J determines 

the stability of the fixed point. In the light of this 

information, we can give the following proposition. 

Proposition 3: Assume 𝐸∗ is a positive fixed point 

of system (2), then 𝐸∗ is:  
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sink fixed point if 𝜇 ∈ (0,0.4) with |𝜆1 < 1| and 

|𝜆2 < 1|.  
Source fixed point if 𝜇 ˃ 0.4 with |λ1 > 1| and 

|λ1 > 1|. 𝜆1 𝑎𝑛𝑑 𝜆2 are pair of conjugate complex 

roots |𝜆1| = 1 and |𝜆2| = 1, if and only if 𝐵2 –  4𝐶 

˂ 0 and 𝐶 = 1 for 𝜇 = 0.4. 

Dynamic analysis of 2d-logistic map 

1. Trajectory (Phase space) 

The trajectory of (1) is series of values, which 

shows the shifting path of the system outputs Fig.1 

describes the trajectory of (1) in the xy-plane for 

initial value 𝑥0 = 0.1, 𝑦0 = 0.1 with the parameter 

𝜇. The trajectory of the 2D-Logistic map is shown 

in Figure 1. 

 
Figure 1. 2D-Logistic map trajectory for μ = 1. 

2. Bifurcation analysis 

The bifurcation is the value of the parameter that 

effecting the system behavior. This behavior is 

described through a diagram that illustrates the 

change of the dynamic. The bifurcation diagram of 

(1) is shown in Figure 2. 

For 0 < 𝜇 < 1 system (1) has chaotic behavior 

with the range 𝜇 ∈[0.85, 0.87] and it is 

hyperchaotic when ∈ [0.89,0.94] ∪ [0.95,1] . 
 

 
Figure 2. Bifurcation diagram of the 2D-Logistic map. 

3. Lyapunov exponent (LE) 

The extreme sensitivity to the initial condition 

essentially characterizes the chaosity of the 

nonlinear dynamical systems. Suppose two 

adjacent trajectories of a dynamical system diverge 

exponentially. In that case, this arbitrary invariant 

is used to characterize a chaotic system known as 

the Lyapunov exponent. The chaosity of (1) is 

investigated by the LE, as shown in Figure 3. It 

shows that the proposed system has chaotic 

behavior in some parameters and hyperchaotic 

behavior in others. The average of LE is used to 

define the local instability of a given system. 

Note that, for 0 < 𝜇 < 1, system (1) has chaotic 

behavior with the range 𝜇 ∈[0.85, 0.87] and it is 

hyperchaotic when 𝜇 ∈ [0.89,0.94] ∪ [0.95,1]. 

 
Figure 3: Lyapunov Exponent of the 2D-Logistic map. 

4. Controlling unstable Discrete Chaos  

Consider an n-dimensional dynamic system 

defined by 

𝑥𝑘+1 = 𝐹(𝑥𝑘) (3) 

where 𝑥 ∈ 𝑅𝑛 is an n-dimensional vector, F is a 

nonlinear vector-valued function. Let 𝑥𝑓 be the 

fixed point of the system (1). To stabilize the 

chaotic orbit of this fixed point, we take variable 

feedback control, which described by: 

𝑥𝑘+1 = 𝐹(𝑥𝑘) + 𝑢(𝑥𝑘) (4) 

Substitute in (4) feedback control 𝑢(𝑥𝑘) =
𝑀(𝐹(𝑥𝑘) − 𝑥𝑘) we get: 

𝑥𝑘+1 = 𝐹(𝑥𝑘) + 𝑀(𝐹(𝑥𝑘) − 𝑥𝑘) (5) 

Define an infinitesimal deviation of 𝑥𝑘 from 𝑥𝑓 as  

𝛿𝑥𝑘 = 𝑥𝑘 − 𝑥𝑓. Then from 5 after applying of 

Taylor series about 𝑥𝑓 , we have  
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𝑥𝑘+1 ≅ 𝐹(𝑥𝑓) +
𝜕𝐹

𝜕𝑥
(𝑥𝑘 − 𝑥𝑓) +

1

2

𝜕2𝐹

𝜕2𝑥
(𝑥𝑘 −

𝑥𝑓)
2
+⋯ + 𝑀 (

𝜕𝐹

𝜕𝑥
(𝑥𝑘 − 𝑥𝑓) − 0)+ 

𝑥𝑘+1 ≅ 𝑥𝑓 + 𝐽𝛿𝑥𝑘 +𝑀𝐽 𝛿𝑥𝑘 

𝑥𝑘+1 − 𝑥𝑓 ≅ 𝐽𝛿𝑥𝑘 +𝑀(𝐽 − 𝐼) 𝛿𝑥𝑘 

𝛿𝑥𝑘+1 =  𝐽𝛿𝑥𝑘 +𝑀(𝐽 − 𝐼) 𝛿𝑥𝑘 (6) 

where J=
𝜕𝐹

𝜕𝑥𝑘
|
𝑥𝑘=𝑥𝑓

is the Jacobain matrix of the 

origin system F that evaluated at the fixed point 𝑥𝑓 

and I is the nxn identity matrix.  

The goal of controlling here is to make 

 ⌈𝛿𝑥𝑘⌉ = 0  
To achieve this goal, it requires: 

𝛿𝑥𝑘+1 = 𝑄𝛿𝑥𝑘 (7) 

where Q is a n×n matrix and takes the form: 

𝑄 = (
𝑞1 0
0 𝑞2

) (8) 

Substituting Eq. (7) and Eq. (8) into Eq. (6) 

Choosing special form matrix Q=qI, q∈(-1,1) 

We get 

𝛿𝑥𝑘+1 = 𝐽𝛿𝑥𝑘 +𝑀(𝐽 − 𝐼) 𝛿𝑥𝑘 

𝑄𝛿𝑥𝑘 = 𝐽𝛿𝑥𝑘 +𝑀(𝐽 − 𝐼) 𝛿𝑥𝑘 

where (𝐽 + 𝑀(𝐽 − 𝐼) − 𝑄) 𝛿𝑥𝑘 = 0. 
We observe 𝐽 + 𝑀(𝐽 − 𝐼) − 𝑄 = 0. 

Note that𝑀(𝐽 − 𝐼) = 𝑄 − 𝐽. 

Finally, we get: 

𝑀 = (𝑞𝐼 − 𝐽)(𝐽 − 𝐼)−1 (9) 

5. Stabilizing of the 2D-logistic map  

The 2D-logstic system is stabilized using the 

following algorithm:  

Input Data: The chaotic system 

𝑥𝑘+1 = (1 − 𝜇)𝑥𝑘 + 4𝜇𝑦𝑘(1 − 𝑦𝑘) 
𝑦𝑘+1 = (1 − 𝜇)𝑦𝑘 + 4𝜇𝑥𝑘(1 − 𝑥𝑘) 

𝑘 = 0,1, . . , 𝑛 

(10) 

Output The stable system. 

 

Algorithm Steps: 

Step 1. Compute fixed point of the 2D-Logistic 

system. 

We get the fixed point (0.9045, 0.3455) by a fixed 

point iteration method. 

Step 2. Compute the Jacobain matrix that 

correspond the fixed point (𝒙𝟏𝒇, 𝒙𝟐𝒇) such that: 

𝐽 = (
(1 − 𝜇) 4𝜇(1 − 2𝒙𝟐𝒇)

4𝜇(1 − 2𝒙𝟏𝒇) (1 − 𝜇)
) (11) 

Step 3. Compute the matrix 𝑀 from Eq. (9) after 

calculation matrix 𝐽 from (11) and compute the 

inverse(𝐽 − 𝐼)−1  

M =

(

 
 

(32μ −  64μx2f)x1f  +  q −  15μ +  32μx2f  −  1)

(64μx2f  −  32μ)x1f  +  15μ −  32μx2f)

(4q +  8x2f  −  8qx2f  −  4)

(64μx2  −  32μ)x1f  +  15μ −  32μx2f)

((8 −  8q)x1f  +  4q −  4)

(64μx2f  −  32μ)x1f  +  15μ −  32μx2f)

(32μ −  64μx2f)x1f  +  q −  15μ +  32μx2f − 1) 

(64μx2f  −  32μ)x1f +  15μ −  32μx2f )

 
 

 (12) 

   

Step 4. Choose the parameter (𝑥1𝑓 ′ 𝑥2𝑓)= (0.9045, 

0.3455) in (10) we get, (𝑞1 ′𝑞2)= (0.3, 0.5) 

Step 5. Compute the matrix M in Eq. (8) at 𝑞1 =
0.3 & 𝑞2 = 0.5 
We get respectively,  

𝑀1 = (
−0.88235 0.14542
−0.38073 −0.88235

), and  

𝑀2 = (
−0.83528 0.20359
−0.53302 −0.83528

) 
(13) 

Step 6. 

From system (2), substitute Eq.(13) into Eq. (10) 

we obtain:  

For M1 

xk+1 = (1 − μ)x𝑘 + 4μyk(1 − yk)
− 0.882[(1 − μ)xk
+ 4μyk(1 − yk) − xk]
+  0.1454[(1 − μ)yk  
+ 4μxk(1 − xk) − yk] 

yk+1 = (1 − μ)yk + 4μxk(1 − xk)
− 0.38073[(1 − μ)xk
+ 4μyk(1 − yk) − xk]
− 0.882[(1 − μ)yk  
+ 4μxk(1 − xk) − 𝑦𝑘] 

 

For M2 

xk+1 = (1 − μ)xk + 4μy𝑘(1 − yk)
− 0.835[(1 − μ)xk
+ 4μyk(1 − yk) − xk]
+  0.2035[(1 −  μ)yk  
+ 4μxk(1 − xk) − yk] 

yk+1 = (1 − μ)yk + 4μxk(1 − xk)
− 0.533[(1 − μ)xk
+ 4μyk(1 − yk) − xk]
− 0.352[(1 − μ)yk  
+ 4μxk(1 − xk) − y𝑘] 
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In this section, the numerical results are shown in 

Figures 4&5. In Figure 4(a), the 2D-Logistic map 

is chaotic before adding stabilization for xi with 

different parameters of 𝜇 ∈ [0.85,0.88], while in 

Figure 4(b), the 2D-logistic map is stable after 

adding stabilization for xi for 𝜇 ∈ [0.85,0.88]. 

In Figure 5 (a), the 2D-logistic map is chaotic 

before adding stabilization for yi with different 

parameters of 𝜇 ∈ [0.85,0.88], while in Figure 

5(b), the 2D-Logistic map is stable after adding 

stabilization for yi with 𝜇 ∈ [0.85,0.88].  

(a) 

 

 (a) 

 
(b) 

 

 (b) 

 

Figure 4. (a) xi versus 𝝁 before the stabilization, 

whenever (b) represent xi versus µ after the stabilization. 
 Figure 5. (a) Represents yi versus 𝝁 befor the stabilization, 

whenever, (b) represent yi versus µ after the stabilization. 

 

CONCLUSION 
In this paper, the 2D-logistic map is considered. It 

has three fixed points. The behavior of these points 

is discussed to show its chaotic behavior for some 

eigenvalues. A straightforward method for 

stabilizing the chaotic behavior of this map is used. 

This method did not require adjustable parameters 

for controlling the chaotic behavior. The results 

show the efficiency of this method, which is 

demonstrated through numerical investigations 

before and after stabilization for different ranges of 

µ value that strongly affected the stability of the 

2D-logistic map. 

, Mustansiriyah University, Baghdad, IRAQ. 
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