Effects of Change PH on the Structural and Optical Properties of Iron Oxide Nanoparticles

Raad S. Sabry, Muslim A. Abid, Sarah Q. Hussein*

Department of Physics, College of Science, Mustansiriyah University, Baghdad, IRAQ.

*Correspondent email: sarahnoend@gmail.com

ABSTRACT

Iron oxide nanoparticles were made using celery extract by chemical method with change PH. Bio-materials in celery extract synthesized the iron oxide nanoparticles by reducing iron (III) chloride (FeCl₃) and then acted as both capping and stabilizing agents. The iron oxide NPs were characterized by XRD, SEM, and UV–vis techniques. The change PH affected the size, shape, and purity of iron oxide NPs. XRD results showed Crystallite size increased from 16.71nm to 21.65nm as pH was increased from 1.6 to 12. SEM images showed that the particle size of (α-Fe₂O₃) NPs was around 40.06 nm, while increasing PH showed different shapes in the same sample. The particle size became approximately 45.56 nm and 61.22 nm. UV–vis measurements showed the energy band increased from 3.11eV to 5.11eV. The antimicrobial activity of iron oxide NPs was determined by growth inhibition zones of the negative gram bacteria E. coli, Klebsiella spp, and gram-positive bacteria S. aureus, S. epidermidis, and fungal Candida albicans. The zones for (α-Fe₂O₃) NPs when PH 1.6 was between (12-13) mm. The zones for (α-Fe₂O₃) NPs when PH 12 was a little higher between (13-15) mm.

KEYWORDS: Iron Oxide nanoparticles; Bio-materials; Structural and optical properties.

INTRODUCTION

In recent years, nanotechnology has become a common and essential technology. Nanotechnology itself addresses nanoparticles that are atomic or molecular aggregates with a scale of fewer than 100 nanometers [1]. Metal oxide NPs are usually considered to be healthy for humans and the environment among the various NPs [2]. The most common metal oxides are titanium dioxide (TiO₂), copper oxide (CuO), zinc oxide (ZnO), bismuth oxide (Bi₂O₃), and iron oxide (Fe₂O₃) [3]. Because of their small size, high magnetism, and low toxicity, iron oxide nanoparticles are widely used [4]. Iron oxide comes in several forms. One of the three primary forms of iron oxides is iron (III) oxide, also known as ferric oxide. It is reddish-brown, semi-magnetic, and often called rust [5]. Drug delivery, wastewater treatment, cancer therapy, and magnetic resonance imaging (MRI) all benefit from iron oxide nanoparticles [6]. Green synthesis is superior to physical and chemical methods for reducing environmental risk because it is an easy, cost-effective, and environmentally friendly process. This approach does not necessitate the use of high pressure, high temperature, large

A r t i c l e I n f o

Received 16/04/2021
Accepted 26/05/2021
Published 20/06/2021

DOI: http://doi.org/10.23851/mjs.v32i3.967

© Copyright 2021 Al-Mustansiriyah Journal of Science. This work is licensed under a Creative Commons Attribution Noncommercial 4.0 International License.
amounts of energy, or harmful chemicals [7]. Plant and bacterial-mediated methods have developed new synthetic techniques for creating a variety of green chemistry to synthesize nanomaterial [8]. In this study, Iron oxide nanoparticles were made using celery extract by chemical method with change PH. The iron oxide forms were determined using X-ray diffraction (XRD) analysis. The scale, morphology, and distribution of iron oxide nanoparticles were studied using scanning electron microscopy (SEM). The absorption spectrum of iron oxide nanoparticles was obtained using UV-visible spectroscopy. Finally, the antibacterial activity was investigated by the well diffusion method.

EXPERIMENTAL PROCEDURE

Materials and methods
Iron salt (FeCl₃) and the plant sample were purchased from the local market in Baghdad, negative Gram bacteria (Escherichia coli, Klebsiella spp) positive Gram bacteria (Staphylococcus, S. epidermidis), and Candida albicans were obtained from the Department of biology, College of Science, Mustansiriya University.

Preparation of Celery extract
The Celery leaves were washed with distilled water for the removal of dust and dirt. Around 10 g of leaves were chopped and boiled for 120 minutes at 80 °C in 100 ml deionized water. Then filtered the extract in burette to use as a reducing and capping agent.

Preparation of IONPs from Celery extract
Iron oxide NPs were created by adding 125 ml of Celery extract to (0.25 M, 4.05 gm, 100 ml) of FeCl₃ Dropwise slowly. Then, mix the reaction materials and pass about 40 minutes. Color change indicates the formation of iron oxide nanoparticles. Finally, for 2 hours at 200°C, the solution is put in the ceramic eyelid in the oven and left in the oven to obtain the nano-iron oxide powder. Eq. (1) provides the chemical reaction to obtain (α-Fe₂O₃) NPs [9].

\[
FeCl₃ + H₂O = Fe₂O₃ \text{Extract} \rightarrow α = Fe - o - Fe = α \tag{1}
\]

The pH was changed from 1.6 to 12 by adding NaOH (14M) and examined with a pH scale on a magnetic stirrer to show the effect of the pH on the iron oxide nanoparticles.

Characterization of IONPs
The obtained samples were confirmed using a step scan mode (XRD-6000, Shimadzu) in the 20 angles ranging from 30° to 80°. The morphologies, microscopic structural, and size distribution of as-synthesized iron oxide Nps samples were characterized by using a scanning electron microscope Tescan Mira3 SEM, Czech Republic) in Iran. The UV–vis spectrum of the colloidal solution was determined with a spectrophotometer (UV-1800, Shimadzu).

Antimicrobial activity of IONPs
The antimicrobial property of synthesized α-Fe₂O₃-NPs was tested to investigate the herbal functionality of NPs. Antimicrobial activity was determined via the agar well diffusion method [10]. For the antimicrobial test, the organisms used were negative Gram bacteria (Escherichia coli, Klebsiella spp), Positive Gram bacteria are (Staphylococcus, S. epidermidis) and Candida albicans. The percentages of inhibition zones were calculated using the equation below [11].

\[
\text{Inhibition Zone (\%)} = \frac{\text{Diameter of the inhibition zone in mm}}{\text{Diameter of petriplate (90 mm)}} \times 100\% \tag{2}
\]

RESULTS AND DISCUSSION

Structural Properties

X-ray diffraction
The crystal planes of (104), (110), (202), (116), and (125) specify the formation of Hematite (α-Fe₂O₃) nanoparticles in both cases, according to
the XRD patterns shown in Fig. (2). This result agrees with [12]. All of the reflection peaks are in good agreement with the rhombohedral structure of (α-Fe$_2$O$_3$) as predicted. The average crystallite sizes were found to be around 16.71 nm when PH 1.6 and 21.65 nm when PH 12. When pH increases to 12 the impurities are eliminated and the material becomes more pure. This may be due to the fact that FeCl$_3$ is not reduced completely to nano Fe, when the pH is raised; all FeCl$_3$ has been reduced to nano Fe. The peak intensities of Fe NPs are increasing when (pH 12) and become more regular compared with PH 1.6.

Optical properties

UV-Vis absorption spectrum

Figure 4 shows the energy band gap of (α-Fe$_2$O$_3$) NPs, determined by drawing the square (α$h\nu$)2 against the energy of the photon ($h\nu$). The energy band gap is calculated by extrapolating the straight line to ($h\nu$)2. The value of the optical band gap of (α-Fe$_2$O$_3$) NPs is 3.11 eV. An increase in the pH value was observed as an increase in the absorbance at 223 nm up to a pH 12[9]. Therefore, the increase in pH increases the energy gap, the value of the bandgap of (α-Fe$_2$O$_3$) NPs at PH 12 is 5.51 eV.

Antibacterial activity

The antimicrobial activity of iron oxide NPs synthesized was investigated against Gram-positive (S. aureus, S. epidermidis) and Gram-negative (Escherichia coli, Klebsiella spp) bacterial cultures, as well as fungal cultures (Candida albicans). The ability of the antibacterial agent NPs to rupture bacterial cells was tested using the good diffusion method. Iron oxide NPs were dissolved in Dimethyl Sulphoxide (DMSO) solvent with a concentration (40 mg/ml).

Morphological properties

The morphology and particle size were studied using the SEM. when PH 1.6. a micrograph of the nanoparticle structures observed with the particle size of 40.06 nm is shown in Figure (3-a). Figure (3-b) (A) Presents FE-SEM of synthesized (α-Fe$_2$O$_3$) NPs when PH 12. A micrograph reveals that the shape of the particles was influenced by the experimental conditions and shows different shapes in the same sample. The NPs aggregation of small NPs to Sheet shape and cubic with particle size 61.22 and 45.56 nm respectively.
Figure 3. FESEM images of (a) when PH 1.6, (b) when PH 12.

Figure 4. Energy band gap of nano α-Fe_2O_3 NPs.

The antibacterial properties of the nanoparticles are because of their nanoscale size that allows assembly or sedimentation on the surface of the bacterial strains under investigation [10]. Plant extracts, in addition to NPs, can have antibacterial activity due to the existence of phytochemical components [2]. The antibacterial activity of iron oxide NP at PH 1.6 and 12 is primarily due to the release of iron ions, which are all electrostatically attracted to the bacterial cell wall. Furthermore, metal ions are capable of penetrating within bacteria as well as communicating with the membrane's surface. The antibacterial activity of iron oxide NP at PH 1.6 and 12 is primarily due to the release of iron ions, which are all electrostatically attracted to the bacterial cell wall. Furthermore, metal ions are capable of penetrating within bacteria as well as communicating with the membrane's surface. NPs can react with the thiol group (-SH) in the bacteria's cell wall, preventing nutrients from being transported through the cell wall. The protein decreases inside the cell, ultimately leading to cellular death [11].

IONPs obviously had antibacterial properties, and the same effect was seen with both gram-negative and gram-positive bacteria.

Table 1. Inhibition zone results of IONPs.

<table>
<thead>
<tr>
<th>The name of the microbe</th>
<th>PH 1.6</th>
<th>PH 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>13 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>13 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>E. coli</td>
<td>13 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>Klebsiella spp</td>
<td>12 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>13 mm</td>
<td>15 mm</td>
</tr>
</tbody>
</table>

Diagram 1. Antimicrobial potency of biosynthesized NPs.
CONCLUSIONS
Celery extracts with FeCl₃ were used to synthesize iron oxide NPs using a simple chemical method at 200 °C for 2 hours. With increasing pH to 12, the results of XRD showed hematite (α-Fe₂O₃) formation in both cases. The average crystallite sizes were found to be around 16.71nm when PH 1.6 and 21.65 nm when PH 12. SEM image showed a micrograph of the nanoparticle structures observed with the particle size of 40.06 nm. When the pH is increased to 12, different shapes are formed in the same sample. The NPs aggregation of small NPs to Sheet shape and cubic with particle size 61.22 and 45.56 nm respectively. UV–vis measurements showed the energy band increased from 3.11eV to 5.11eV. The antimicrobial activity of iron oxide NPs was determined by growth inhibition zones of the negative gram bacteria E. coli, Klebsiella spp, and positive gram bacteria S. aureus, S. epidermidis, and fungal Candida albicans. The zones for (α-Fe₂O₃) NPs are when PH 1.6 was between (12-13) mm. The zones for (α-Fe₂O₃) NPs are when PH 12 was a little higher between (13-15) mm.

REFERENCES