Optical and Morphological Properties of Silver Nanoparticles Synthesis by Laser Induced Forward Transfer Technique

Noor Fakher Khdr, Baida M. Ahmed, Bassam G. Rasheed

Abstract


Various methods could be employed to synthesize nanomaterials. In this work laser induced forward technology was used to synthesize silver nanoparticles. Silver nanomaterials were tested using different measuring instruments such as UV–vis diffuse (DRS), Atomic Force Microscopy (AFM), and optical Microscope to characterize features such as the optical and morphological properties of these nanoparticles. AFM results show that when the laser energy of the pulsed Nd: YAG laser increases, the diameter and roughness of produced AgNPs will be decreased for the same number of pulses and the air cavity between donner and acceptor. Also, results show that when laser energy is (300,400) mJ, the AgNPs diameters are (95.76,88.44) nm and the roughness are (7,6) nm respectively. While, results show that as laser pulses increase, structure to be rougher for different laser pulses and constant laser energy at 300 mJ the same behavior will be found when the laser energy becomes 400mJ.Finally, results show that the reflectance peaks of Ag NPs increase by decreasing the number of pulses to a maximum value of 467 at 2 pulses.

Keywords


Lase induced forward transfer technique; Silver; Nanoparticles; Optical; Morphological Properties.

Full Text:

PDF

References


Ochekpe NA, Olorunfemi PO, Ngwuluka NC: Nanotechnology and drug delivery part 1: background and applications. Tropical journal of pharmaceutical research 2009, 8(3).

CrossRef

Arnold CB, Serra P, Piqué A: Laser Direct-Write Techniques for Printing of Complex Materials. MRS Bulletin 2007, 32(1):23-31.

CrossRef

Kaur K: Laser-induced forward transfer techniques for printing functional materials and photonic devices. University of Southampton; 2011.

Banks DP, Grivas C, Mills JD, Eason RW, Zergioti I: Nanodroplets deposited in microarrays by femtosecond Ti: sapphire laser-induced forward transfer. Applied physics letters 2006, 89(19):193107.

CrossRef

Morales M, Munoz-Martin D, Marquez A, Lauzurica S, Molpeceres C: Laser-Induced Forward Transfer Techniques and Applications. Advances in Laser Materials Processing 2018:339-379.

CrossRef

Visser CW, Pohl R, Sun C, Römer GW, Huis in 't Veld B, Lohse D: Toward 3D printing of pure metals by laser‐induced forward transfer. Advanced materials 2015, 27(27):4087-4092.

CrossRef | PubMed

Braudy RS: Laser writing. Proceedings of the IEEE 1969, 57(10):1771-1772.

CrossRef

Colina M, Duocastella M, Fernández-Pradas JM, Serra P, Morenza JL: Laser-induced forward transfer of liquids: Study of the droplet ejection process. Journal of applied physics 2006, 99(8):084909.

CrossRef

Colina M, Morales-Vilches A, Voz C, Martín I, Ortega P, Orpella A, López G, Alcubilla R: Laser Induced Forward Transfer for front contact improvement in silicon heterojunction solar cells. Applied Surface Science 2015, 336:89-95.

CrossRef

Munoz-Martin D, Brasz CF, Chen Y, Morales M, Arnold CB, Molpeceres C: Laser-induced forward transfer of high-viscosity silver pastes. Applied Surface Science 2016, 366:389-396.

CrossRef

Smits EC, Walter A, De Leeuw DM, Asadi K: Laser induced forward transfer of graphene. Applied Physics Letters 2017, 111(17):173101.

CrossRef

da Rocha LER, de Paula KT, Mendonça CR: Laser induced forward transfer of silver nanoparticles patterns. In: 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC): 2019: IEEE; 2019: 1-3.




DOI: http://dx.doi.org/10.23851/mjs.v32i3.995

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Al-Mustansiriyah Journal of Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Copyright (c) 2018 by Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (Print), ISSN: 2521-3520 (online)