Effect of Anodization Duration in the TiO2 Nanotubes Formation on Ti Foil and Photoelectrochemical Properties of TiO2 Nanotubes

Asmaa Kadim Ayal

Abstract


In this work, the effect of anodizing duration on the morphology and photoelectrochemical properties of TiO2 nanotubes arrays (NTAs) has been investigated The samples were characterized by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) to characterize their crystalline structure and compositional. Surface morphological and their dimensional variation was examined by field emission scanning electron microscopy (FESEM). The anodizing duration played a significant role in the formation of TiO2 nanotubes arrays. Moreover, the photoelectrochemical properties (PEC) were studied through photocurrent measurements. Optimum anodizing duration of 60 min at 40 V exhibited maximum photocurrent of 0.03 mA cm-2 under illumination of halogen light.

Keywords


Anodization duration, TiO2 nanotube, Photoelectrochemical

Full Text:

PDF

References


T. G. Kim, H. B. Oh, H. Ryu, and W. J. Lee, “The study of post annealing effect on Cu2O thin-films by electrochemical deposition for photoelectrochemical applications,” J Alloys Compd, vol. 612, pp. 74–79, 2014.

M. C. Huang, W. S. Chang, J. C. Lin, Y. H. Chang, and C. C. Wu, “Magnetron sputtering process of carbon-doped α-Fe2O3 thin films for photoelectrochemical water splitting,” J Alloys Compd, vol. 636, pp. 176–182, 2015.

A. M. Holi, Z. Zainal, Z. A. Talib, H.-N. Lim, C.-C. Yap, S.-K. Chang, and A. K. Ayal, “Enhanced photoelectrochemical performance of ZnO nanorod arrays decorated with CdS shell and Ag2S quantum dots,” Superlattices Microstruct, vol. 103, pp. 295–303, 2017.

A. K. Ayal, Z. Zainal, H.-N. Lim, Z. A. Talib, Y.-C. Lim, S.-K. Chang, and A. M. Holi, “Photocurrent enhancement of heat treated CdSe-sensitized titania nanotube photoelectrode,” Opt Quantum Electron, vol. 49, no. 4, pp. 1–11, 2017.

A. Kadim, Z. Zainal, H. Ngee, Z. Abidin, Y. Lim, S. Chang, and A. Mebdir, “Fabrication of CdSe nanoparticles sensitized TiO2 nanotube arrays via pulse electrodeposition for photoelectrochemical application,” Mater Res Bull, vol. 106, no. December 2017, pp. 257–262, 2018.

P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: Synthesis and applications,” Angew Chemie - Int Ed, vol. 50, no. 13, pp. 2904–2939, 2011.

W. Wang, F. Li, D. Zhang, D. Y. C. Leung, and G. Li, “Applied Surface Science Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe / TiO2 nanotube arrays,” Appl Surf Sci, vol. 362, pp. 490–497, 2016.

S. G. Ghugal, S. S. Umare, and R. Sasikala, “Enhanced photocatalytic activity of TiO2 assisted by Nb , N and S multidopants,” Mater Res Bull, vol. 61, pp. 298–305, 2014.

K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. Feng, M. Paulose, J. a Seabold, K. Choi, and C. a Grimes, “Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative photoelectrochemistry,” J Phys Chem C, vol. 113, no. 16, pp. 6327–6359, 2009.

O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels,” Nano Lett, vol. 9, no. 2, pp. 731–737, 2009.

J. M. Macák, H. Tsuchiya, A. Ghicov, and P. Schmuki, “Dye-sensitized anodic TiO2 nanotubes,” Electrochem commun, vol. 7, no. 11, pp. 1133–1137, 2005.

T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Formation of Titanium Oxide Nanotube,” Langmuir, vol. 14, no. 12, pp. 3160–3163, 1998.

P. Hoyer, “Formation of a Titanium Dioxide Nanotube Array,” Langmuir, vol. 12, no. 6, pp. 1411–1413, 1996.

D. Gong, C. a. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J Mater Res, vol. 16, no. 12, pp. 3331–3334, 2001.

G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. a. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications,” Sol Energy Mater Sol Cells, vol. 90, no. 14, pp. 2011–2075, 2006.

V. Zwilling, D. David, M. Y. Perrin, and M. Aucouturier, “Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy,” Surf. Interface Anal., vol. 637, no. October 1998, pp. 629–637, 1999.

Q. Cai, “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation,” 230 J Mater Res, vol. 20, pp. 230–236, 2005.

M. S. Su, F. Alamgir, P. Scardi, and A. Ahmad, “Morphological Studies of Vertical Arrays TiO2 Nanotubes by Electrochemical Anodization Technique for Dye Sensitized Solar Cell Application,” AIP Conf Proc, vol. 1571, no. 2013, pp. 835–842, 2013.

H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “ARTICLES A New Benchmark for TiO2 Nanotube Array Growth by Anodization,” J Phys Chem C, vol. 111, pp. 7235–7241, 2007.

M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. J. LaTempa, A. Fitzgerald, and C. a Grimes, “Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.,” J Phys Chem B, vol. 110, no. 33, pp. 16179–16184, 2006.

X. Chen, X. Chen, J. Tang, and S. Chen, “Energy Procedia Preparation of Self-organized Titania Nanotubes Electrode and Its Electrochemical Properties,” Energy Procedia, vol. 16, pp. 1206–1210, 2012.

D. Regonini and F. J. Clemens, “Anodized TiO2 Nanotubes : Effect of anodizing time on film length, morphology and photoelectrochemical properties,” Mater Lett, pp. 1–5, 2014.




DOI: http://dx.doi.org/10.23851/mjs.v29i3.640

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Al-Mustansiriyah Journal of Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Copyright (c) 2018 by Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (Print), ISSN: 2521-3520 (online)