ERIC- PCR Typing, RAPD-PCR Fingerprinting and Quorum Sensing Gene Analysis of Pseudomonas aeruginosa Isolated from Different Clinical Sources

ruqaia sabbar sallman, Suzan Saadi Hussein, Munum Radwan Ali


Recently, Pseudomonas aeruginosa infections proportions have increased significantly. Molecular typing and virulence analysis are good techniques, which can lead us to know P. aeruginosa infections. P. aeruginosa isolates were identified by using molecular method (16S rDNA gene) via PCR technique for accurate identification. The highest percent 41.26% of P. aeruginosa bacteria was found in the burn infections followed by 28.57% in wound swabs, 17.46% in ear discharge and lowest percentage were obtained from sputum samples. All isolates classified into six groups (A-F) according to classes of antibiotics. Of the 63 bacterial isolates, 100% were resistant to carbencillin, whereas 31.74% were resistant to ticarcillin and all isolates susceptible to imipenem. In addition all of clinical isolates indicated multidrug resistant (MDR) patterns, the highest rate of MDR was observed with pattern C these isolates were able to resist (9-12) antibiotics. All isolates were typed genotypically by using two methods of amplification, ERIC and RAPD-PCR. The results of the ERIC-PCR typing of P. aeruginosa bacteria that 96.82% showed amplification bands ERIC-PCR also revealed 17 groups of genotypes (A-R) and 4 unique isolates. The results of RAPD-PCR fingerprint revealed 12 groups of genotypes (A-M) of 40–90% similarity according to coefficient values and 4 unique isolates, except 7.93% were untypeble. QS genes (lasI, lasR, rhlI, rhlR), screen showed all isolates 100% were positive for one or more QS genes, in the other hand 82.53% carrying lasI, lasR, rhlI, and rhlR, while the 15.87% carrying lasI, rhlI, and rhlR and 1.58% carrying lasI, lasR, and rhlR genes. ERIC genotyping significantly correlated resistance patterns but not with virulence control QS genes. RAPD genotyping significantly correlated with source of infection, resistance patterns and virulence control QS genes. These results can help initial diagnosis MDR P. aeruginosa outbreaks associated with specific genotyping patterns.


Pseudomonas aeruginosa, ERIC-PCR typing, RAPD-PCR fingerprinting, Quorum sensing genes.

Full Text:



Valderrey, A. D., Pozuelo, M. J., Jime´nez, P. A., Macia´, M. D., Oliver, A., Rotger, R. Chronic colonization by Pseudomonas aeruginosa of patients with obstructive lung diseases: cystic fibrosis, bronchiectasis, and chronic obstructive pulmonary disease. Diagn. Microbiol. Infect. Dis. 68, 20–27, 2010.

Schuster, M. and Greenberg, E.P., A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73-81, 2006.

Williams, P. and Cámara, M., Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: at ale of regulatory networks and multifunction al signal molecules. Curr. Opin. Microbiol. 12, 182–191, 2009.

Naze, F., Jouen, E., Randriamahazo, R. T., Pseudomonas aeruginosa outbreak linked to mineral water bottles in a neonatal intensive care unit: fast typing by use of high-resolution melting analysis of a variable-number tandem-repeat locus. J. Clin. Microbiol. 48(9), 3146-52, 2010.

Feltman, H., Schulert, G., Khan, S., Jain, M., Peterson, L., Hauser, A. R., Microbiology. 147, 2659–2669, 2001.

Kidd, T. J., Grimwood, K., Ramsay, K. A., Rainey, P. B., Bell, S. C., Comparison of three molecular techniques for typing Pseudomonas aeruginosa isolates in sputum samples from patients with cystic fibrosis. J. Clin. Microbiol. 49(1), 263-8, 2010.

Li, W., Raoult, D., Fournier, P. E., Bacterial strain typing in the genomic era. FEMS Microbiol. 33(5), 892–916, 2009.

CLSI, (Clinical & Laboratory Standards institute), Performance standard for antimicrobial susceptibility testing, 2014.

Ruppé, E., Hem, S., Lath, S., Gautier, V., Ariey, F., Sarthou, J.L., Monchy, D., Arlet, G., CTX-M β-Lactamases in Escherichia coli from Community-acquired Urinary Tract Infections. J. Emerg. Infect. Dis. 15(5), 741-8, 2009.

Spilker, T., Coenye, T., Vandamme, P., LiPuma, J. J., PCR-Based Assay for Differentiation of Pseudomonas aeruginosa from Other Pseudomonas Species Recovered from Cystic Fibrosis Patients. Journal of Clinical Microbiology. 42, 2074–2079, 2004.

Tosin, I., Silbert, S., Sader, H. S.,The use of molecular typing to evaluate the dissemination of antimicrobial resistance among Gram-negative rods in Brazilian hospitals. Braz. J. Infect. 7, 360-9, 2003.

Auda, I. G.; Al-Kadmy, I. M. S.; Kareem, S. M.; Lafta, A. K.; A’Affus, M. H. O.; Khit, I. A. A.; Kheraif, A. A.; Divakar, D. D.; Ramakrishnaiah, R., RAPD- and ERIC-Based Typing of Clinical and Environmental Pseudomonas aeruginosa Isolates. Journal of AOAC International. 100(2), 2017.

Cotar, A. I., Chifiriuc, M. C., Dinu, S., Pelinescu, D., Banu, O., Lazăr, V., Quntitative Real-time PCR study of the influence of probiotic culture soluble fraction on the expression of Pseudomonas aeruginosa quorum sensing genes.Romanian archives of microbiology and immunology. 69(4), 213-223, 2010.

De la Puente-Redondo, V. A., del Blanco, N. G., Gutierrez-Martin, C. B., Garcia-Pena, F. J. & Rodriguez Ferri, E. F., Comparison of different PCR approaches for typing of Francisella tularensis strains. J. Clin. Microbiol. 38, 1016–1022, 2000.

Nei, M. and Lei, W. H., Mathematical model for studying genetic variation in terms of vostriction endonucleases. Proc. Natl. Acad. Sci. USA. 76, 5269–73, 1979.

Brooks, E., Melnick, J. L., Adelberg, E. A., Adelberg, Medical Microbiology. 24th . McGraw – Hill companies. N.Y, U.S.A., 189-201, 2007.

Todar, K. "Pseudomonas aeruginosa." Online Text Book for Bacteriology. 2008.

Farahani, A., Mohajeri, P., Gholamine, B., Rezaei, M., Abbasi, H., Comparison of Different Phenotypic and Genotypic Methods for the Detection of Methicillin-Resistant Staphylococcus aureus. N. Am. J. Med. Sci. 5(11), 637–640, 2013.

Mahmoud, A. B., Zahran, W. A., Hindawi, G. R., Labib, A. Z., Galal, R., Prevalence of Multidrug Resistant Pseudomonas aeruginosa in Patients with Nosocomial Infections at a University Hospital in Egypt, with Special Reference to Typing Methods. Journal of Virology & Microbiology.

Pathmanathan, S. G., Samat, N. A., Mohamed, R., Antimicrobial Susceptibility of Clinical Isolates of P. aeruginosa from a Malaysian Hospital. Malaysian Journal of Medical Sciences. 16 (2),146-152, 2009.

Khan, M.A. and Faizb, A., Antimicrobial resistance patterns of Pseudomonas aeruginosa in tertiary care hospitals of Makkah and Jeddah. Ann. Saudi Med. 36(1), 23-28, 2016.

Bayram, A. and Balci, I., Patterns of antimicrobial resistance in a surgical intensive care unit of a university hospital in Turkey. BMC Infect. Dis. 6, 155-160, 2006.

Al-Zahrani, S. H. M., Bacteria isolated from contact and non contact lens and antibiotic susceptibility patterns of isolated Pseudomonas aeruginosa. African Journal of Microbiology Research. 6(47), 7350-7356, 2012.

Hassan, K.I., Rafik, S.A., Mussum, K., Molecular identification of Pseudomonas aeruginosa isolated from Hospitals in Kurdistan region. Journal of Advanced Medical Research. 2, 90-98, 2012.

Jaafar, Z.M., Dhahi, M. A. R., Abd, A. H., Jaafar, S. M., Molecular identification and antibiotics resistance genes profile of Pseudomonas aeruginosa isolated from Iraqi patients. African Journal of Microbiology Research. 8(21), 2183-2192, 2014.

Jamunadevi, S., Balashanmugam, P., Muralitharan, G. and Kalaichelvan P. T., Molecular Characterization of Pathogenic and Non-pathogenic Pseudomonas aeruginosa with Special Reference to Phenazine Gene. Journal of Modern Biotechnology. 1(2), 70–74, 2012.

Warnes, S.L., Highmore, C.J., Keevil, C.W. Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health. mBio 3(6):e00489-12. doi:10.1128/mBio.00489-12, 2012.

Tavajjohi, Z. and Moniri, R. Detection of ESBLs and MDR in Pseudomonas aeruginosa in a Tertiary-Care Teaching Hospital. Iranian Journal of Clinical Infectious Diseases. 6(1), 18- 23, 2011.

Carmeli, Y. N., Eliopoulos, G. M., Samore, M. H., Antecedent Treatment with Different Antibiotic Agents. Emerg. Infect. Dis. 8, 802–807, 2002.

Dawson, S. L., Fry, J. C., Dancer, B. N., A comparative evaluation of five typing techniques for determining the diversity of fluorescent pseudomonads. J. Microbiol. Meth. 50, 9–22, 2002.

Tenover, F. C., Arbeit, R. D., Goering, R.V., How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: A review for healthcare epidemiologists. Infect Control Hosp. Epidemiol. 18, 426–439, 1997.

Patton, T. G., Katz, S., Sobieski, R. J., Crupper SS. Genotyping of clinical Serratia marcescens isolates: a comparison of PCR-based methods. FEMS Microbiol. Lett. 194(1), 19-25, 2001.

Wolska, K. A. and Szweda, P. I. Pol. J. M icrobiol. 57, 157–163, 2008.



  • There are currently no refbacks.

Copyright (c) 2018 Al-Mustansiriyah Journal of Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 by Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (Print), ISSN: 2521-3520 (online)