Conic Parameterization in PG(2,25)

Emad Bakr Al-Zangana, Elaf Abdul Satar Shehab


The main aim of this paper is to parameterize the conics form through the inequivalent 5-arcs in PG (2,25) using one-one correspondence property between line and conic. The inequivalent 6-arcs in PG (2,25), also have been computed with some examples.

Full Text:



E. B. Al-Zangana. The geometry of the plane of order nineteen and its application to error-correcting codes. Ph.D. Thesis, University of Sussex, UK, 2011.

E. B. Al-Zangana. Groups effect of types D_5 and A_5 on the points of projective plane Over F_q,q=29,31. Ibn Al-Haitham Jour. for Pure and Appl. Sci., Vol. 26(3), 2013.

E. B. Al-Zangana. Results in projective geometry PG(r,23),r=1,2. Iraqi Journal of Science, 57(2A), (964-971), 2016.

S. Marcugini, A. Milani and F. Pambianco. Complete arcs in PG(2,25): The spectrum of the sizes and the classification of the smallest complete arcs. Discrete Mathematics, 307, (739 -747), 2007.

K. Coolsaet and H. Sticker. A full classification of the complete k-arcs of PG(2,23) and PG(2,25). Journal of Combinatorial Designs, 17(6), (459-477), 2009.

J.W.P. Hirschfeld , Projective geometries over finite fields, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.

R. Lidl and H. Niederreiter. Finite fields, 2nd edition. Cambridge, 1997.

A. D. Thomas and G. V. Wood. Group tables. Shiva Mathematics Series; 2, Shiva Publishing Ltd, 1980.

E. B. Al-Zangana and E. A. Shehab. Classification of k-sets in PG(1,25), for k=4,…,13, 2017, to appear.



  • There are currently no refbacks.

Copyright (c) 2018 Al-Mustansiriyah Journal of Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 by Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (Print), ISSN: 2521-3520 (online)