Biosynthesis and Characterization of TiO2 Nanoparticles by Lactococcus lactis ssp. lactis

Susan Abdul Raheem Hasan, Jehan AbdulSattar Salman, Sawsan Sajid Al-Jubori

Abstract


Lactococcus lactis ssp. lactis isolated from raw milk was used for titanium dioxide (TiO2) nanoparticles biosynthesis. Biosynthesized TiO2 nanoparticles were characterized using UV-vis spectroscopy, Atomic Force Microscopy (AFM) (1.97 nm), X-ray diffraction (XRD) appa-ratus, Field Emission Scanning Electron Microscopy (FE-SEM), Energy dispersive X-ray anal-ysis (EDX) spectra and Fourier Transform Infrared Spectroscopy (FTIR). Result was 408.21 cm-1 that belong to anatase Titania. L. lactis ssp. Lactis isolates had the ability to synthesize TiO2 nanoparticles, the characterization results presented that the biosynthesized nanoparti-cles were at wavelength (344-347) nm; approving the formation of anatase phase of TiO2 NPs; spherical crystals, with particles, average diameter of 47.22 nm.

 


Keywords


Probiotics bacteria, Lactococcus spp., Biosynthesis, TiO2 nanoparticles

Full Text:

PDF

References


F. Zendeboodi, N. Khorshidian, A. M. Mortazavian and A. G. Cruz. Probiotic: conceptualization from a new approach. Current Opinion in Food Science.32: 103-123, 2020.

CrossRef

M. G. Gareau , P. M. Sherman and W. A. Walker. Probiotics and the gut microbiota in intestinal health and disease. Nature reviews. Gastroenterology and hepatology. 7(9), 503-514, 2010.

CrossRef | PubMed

M. Kechagia, D. Basoulis, S. Konstantopoulou, D. Dimitriadi, K. Gyftopoulou, N. Skarmoutsou and E. M. Fakiri. Health benefits of probiotics: a review. ISRN nutrition. 481651: 1-7, 2013.

CrossRef | PubMed

R. W. Hutkins. Microbiology and Technology of Fermented Foods. Blackwell Publishing Professional, Ames, IA, pp. 3-14, 2006.

CrossRef

M. Azizpour, S. D. Hosseini, P. Jafari and N. Akbary. Lactococcus lactis: A new strategy for vaccination. Avicenna journal of medical biotechnology. 9(4): 163-168, 2017.

P. Velusamy, G. V. Kumar, V. Jeyanthi, J. Das and R. Pachaiappan. Bio- inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicological research. 32(2): 95-102, 2016.

CrossRef | PubMed

M. Gomathy and K. Sabarinathan. Microbial mechanisms of heavy metal tolerance-a review. Agricultural Reviews. 31(2): 133-138, 2010.

A. Ayesha. Bacterial synthesis and applications of nanoparticles. Nano Science and Nano Technology an Indian Journal. 11(2):119- 149, 2017.

K. K. Darani, A. G. Cruz, M. R. Mozafari, Z. Abdi and N. Ahmadi. Biosynthesis of metal nanoparticles by probiotic bacteria. Letters in Applied NanoBioScience. 8(3): 619-626, 2019.

CrossRef

K. H. Ibrahem, J. A. S. Salman and F. A. Ali. Effect of titanium nanoparticles biosynthesis by Lactobacillus crispatus on urease, hemolysin & biofilm forming by some bacteria causing recurrent UTI in Iraqi women. European Scientific Journal, ESJ. 10(9): 324- 338, 2014.

H. J. Prabu and I. Johnson. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala International Journal of Modern Science. 1(4), 237-246, 2015.

CrossRef

S. Liu, D. Tao, H. Bai and X. Liu. Cellulose-nanowhisker-templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. J. Appl. Polymer Polysaccharides. 25(1): 282-290, 2012.

CrossRef

R. K. Singh, J. C. Knowles and H. W. Kim. Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. Journal of tissue engineering. 10: 1-9, 2019.

CrossRef | PubMed

S. Paidari and S. A. Ibrahim. Potential application of gold nanoparticles in food packaging: a mini review. Gold Bulletin. 54: 31-36, 2021.

CrossRef

F. J. Carr, D. Chill and N. Maida. The lactic acid bacteria: a literature survey. Critical Rev. Microbiol. 28(4): 281-370, 2002.

CrossRef | PubMed

K. E. Alzahrani, A. A. Niazy, A.M. Alswieleh, R. Wahab, A. M. El-Toni and H.S. Alghamdi. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles. International journal of nanomedicine. 13: 77-87, 2017.

CrossRef | PubMed

M. Mishra, J. S. Paliwal, S. K. Singh, E. Selvarajan, C. Subathradevi and V. Mohanasrinivasan. Studies on the inhibitory activity of biologically synthesized and characterized zinc oxide nanoparticles using Lactobacillus sporogens against Staphylococcus aureus. Journal of Pure and Applied Microbiology. 7(2): 1263-1268, 2013.

P. Anandgaonker, G. Kulkarni, S. Gaikwad and A. Rajbhoj. Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arabian Journal of Chemistry. 12(8):1815-1822, 2015.

CrossRef

K. S Landage, G. K Arbade, P. Khanna and C. J. Bhongale. Biological approach to synthesize TiO2 nanoparticles using Staphylococcus aureus for antibacterial and antibiofilm applications. Journal of Microbiology & Experimentation. 8(1):36-43. 2020.

T. Theivasanthi and M. Alagar. Titanium dioxide (TiO2) nanoparticles - XRD analyses - An insight. Chemical Physics. 1: 1-10, 2013.

CrossRef

A. Jha and K. Prasad. Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Microbial Biotechnology Journal. 5(3): 285-291, 2010.

CrossRef | PubMed

H. A. Al-Zahrani, A. A. El-Waseif and D. E. El-Ghwas. Biosynthesis and evaluation of TiO2 and ZnO nanoparticles from in vitro stimulation of Lactobacillus johnsonii. Journal of Innovations in Pharmaceutical and Biological Sciences (JIPBS). 5(1): 16-20, 2018.

M. R. Mohammadizadeh, M. Bagheri, S. Aghabagheri and Y. Abdi. Photocatalytic activity of TiO2 thin films by hydrogen DC plasma. Applied Surface Science. 350: 43- 49, 2015.

CrossRef

E. G. Mariquit, W. Kurniawan, M. Miyauchiro and H. Hinode. Effect of addition of surfactant to the surface hydrophilicity and photocatalytic activity of immobilized Nano-TiO2 thin films. Journal of Chemical Engineering of Japan. 48(10): 856-861, 2015.

CrossRef

A. Khalid, P. Ahmad, A. Alharthi, S. Muhammad, M. U. Khandaker, M. R. I. Faruque, I. U. Din and M. A. Alotaibi. Unmodified titanium dioxide nanoparticles as a potential contrast agent in photon emission computed tomography. Crystals. 11(2): 171- 181, 2021.

CrossRef

G. Gohari, A. Mohammadi and A. Akbari. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific reports. 10(1): 912- 926, 2020.

CrossRef | PubMed

M. Aravind, M. Amalanathan and M. S. M. Mary. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Applied Sciences. 3(409): 1-10, 2021.

CrossRef

T. Santhoshkumar, A. A. Rahuman, C Jayaseelan, G. Rajakumar, S. Marimuthu, A. V. Kirthi, K. Velayutham, J. Thomas, J. Venkatesan and S.K. Kim. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine. 7(12):968-976, 2014.

CrossRef

P. Praveen., G. Viruthagiri and N. Shanmugam. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles - Synthesized via sol-gel route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 117: 622-629, 2014.

CrossRef | PubMed

D. Dodoo-Arhin, F. P. Buabeng, J. M. Mwabora, P. N. Amaniampong, H. Agbe, E. Nyankson, D. O. Obada and N.Y. Asiedu. The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants. Heliyon. 4(7): 1- 23, 2018.

CrossRef | PubMed

Y. Xing, X. Li, X. Guo, W. Li, J. Chen, Q. Liu, Q. Xu, Q. Wang, H. Yang, Y. Shui and X. Bi. Effects of different TiO2 nanoparticles concentrations on the physical and antibacterial activities of chitosan-based coating film. Nanomaterials (Basel, Switzerland). 10(7): 1365- 1384, 2020.

CrossRef | PubMed

J. Laisney, A. Rosset, V. Bartolomei, D. Predoi, D. Truffier-Boutry, S. Artous, V. Bergé, G. Brochardd and I. Michaud-Soret. TiO2 nanoparticles coated with bio-inspired ligands for the safer-by-design development of photocatalytic paints. Environmental Science: Nano. 8(1): 297-310, 2021.

CrossRef

C. Y. Wu, K. J. Tu, J. P. Deng, Y. S. Lo and C. H. Wu. Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with superior water-Dispersibility for photocatalysis. Materials (Basel, Switzerland). 10(5): 566- 581, 2017.

CrossRef | PubMed




DOI: http://dx.doi.org/10.23851/mjs.v32i4.1034

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Al-Mustansiriyah Journal of Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Copyright (c) 2018 by Al-Mustansiriyah Journal of Science
ISSN: 1814-635X (Print), ISSN: 2521-3520 (online)