Endothelin Level and Its Correlation with Uric Acid in Type 2 Diabetic Multiuse Patients

Zahraa M. Ismail¹*, Zyad H. Jawad Al-Qaisi¹, Ali Jasim Hammood²

¹Chemistry Department, College of Science, Mustansiriyah University, Baghdad, IRAQ.
²Pharmacy Department, Al-Kut University College, Wasit, IRAQ.

*Correspondent contact: majidzahraa07@gmail.com

ABSTRACT
This research aims to find the direct linkage among the Uric acid rates with Endothelin (ET-1), which is considered the indication of endothelial dysfunction or endothelial damage in patients with T2-DM. This study, included 96 patients with T2-DM and 96 controls, the mean age ranged (56.73 ± 9.14), (56.42 ± 8.74) respectively. Results showed a highly significant increase in Endothelin (ET-1) levels, uric acid, urea, and systolic blood pressure (SBP) was observed as compared with control group, while Diastolic blood pressure (DBP) and body mass (BMI) were not substantially increased. Additionally, significant positive correlation was found between ET-1 with uric acid, urea, SBP, DBP in patients with T2-DM (p < 0.05). Finally, elevated uric acid levels in older people who have chronic blood pressure are one of the factors influencing the increase release of ET-1, thus the development of cardiovascular disease.

KEYWORDS: Endothelin (ET-1); Hypertension, Uric acid.

INTRODUCTION
Elevated serum uric acid was accompanied sequentially with elevate hypertension, insulin resistance, dyslipidemia, chronic kidney disease. So high levels of serum uric acid may be a marker or a consequence of up-regulated or increased Xanthine Oxidoreductase (XOR) activity and increased oxidative stress, tumor necrosis factors, and both of them play important role in early T2-DM complication [1,2]. In patients with congestive heart failure found that high serum uric acid levels slightly production from the failing heart, considered as a prediction in patients with congestive heart failure and hypertension. Cardiovascular disease and increased mortality appear clear with elevate serum uric acid levels particular in the elder population, patients with T2-DM and in other high-risk patient groups [3,4]. In addition, Oxidative stress plays an important role in endothelial cell damage and functional changes and found that a significant increased oxidative stress level related to serum uric acid concentration, indicating that serum uric acid is involved in the formation of the early chronic kidney disease. On the other hand, bioavailability of nitric oxide reduced in present high levels of uric acid and this led to endothelial dysfunction and therefore, increased Endothelin-1 (ET-1) level, and decreased Nitric oxide /Endothelin-1 ratio. This could lead to several cardiovascular complications and even cardiovascular disease (CVD) related death precisely with (coronary heart disease, hypertension, and thrombosis) and cardiac insufficiency [5-8].

MATERIAL AND METHODS
Subjects
192 samples were included in this study, divided in two group (96 patients with T2-DM), and (96 healthy group). All information was taken for patients and healthful categories including weight, length, body mass index (BMI), age and family background of chronic kidney sickness. Furthermore, there was a person responsible for measuring blood pressure by the same scale. Venous blood samples have 10 ml volume taken using plastic disposable syringes, after coagulation, the serum was extracted by a
Endothelin Level and Its Correlation with Uric Acid in Type 2 Diabetic Multiuse Patients

Ismail et al.

2020

Determination of Endothelin, Uric Acid, Urea

This assay utilizes the quantitative sandwich enzyme immunoassay (ELISA) technique was employed for valuation of Endothelin [9]. Uric acid [10], urea [11] was measured by enzymatic colorimetric method.

Statistical Analysis

Mean values and standard deviations (SD) utilized for continuous variables. Student T-test used to compare the importance of the variation in the mean control and cohort groups values. High significance: p-value ≤ 0.01 (HS), significance: p-value ≤ 0.05 (S). Correlation coefficient was used to determined relationship between studied parameters [12].

RESULTS

The prevalence of uric acid > 5.8 mg/dL (5.81±0.89) mg/dL, was higher in patients with hypertension and T2-DM when compared with control group UA < 5.8 mg/dL (5.02 ± 0.93) mg/dl (P=0.004). The higher uric acid category had marginally greater more BMI values (32.96±5.63) confront to the lower uric acid category. (31.12 ±2.98) kg/m², P= 0.138).

Additionally, it was noted that there is a significant increase in urea in the blood in patients with T2-DM (31.60 ± 5.22) as compared with healthy control (27.30 ± 4.49). In this study, the prevalence of hypertension systolic blood pressure (SBP) was high significant increase (p-value ≤ 0.01) In T2-DM patients parallel to the control condition, there was a showed no significant rise in diastolic pressure (DBP) (p=0.217) when compared to healthy control groups as shown in Table 1. The results in Figure 1 displays a positive and significant correlation between ET-1 as well as serum uric acid (r=0.238, p < 0.05 S), ET-1level was a highly significant positive correlation with the serum urea (r=0.358, p=0.006 HS). While, there was a Considerable favorable interconnection between ET-1 and SBP (r=0.09, p=0.035), significant negative correlation between ET-1 and DBP (r= -0.265, p=0.045). Table 3 shows the correlation coefficient (r) serum Endothelin (ET-1) and other parameters.

DISCUSSION

Association have also been found between plasma Endothelin and Hypertension happening serum uric acid rates, the results showed an important linkage between the rates of plasma endothelieone and hypertension. (p<0.05).

Table 1. Clinical characteristics of 96 patients with diabetes mellitus and 96 normal subjects.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control Patients</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>BMI</td>
<td>56.42 ± 8.74</td>
<td>56.73 ± 9.14</td>
</tr>
<tr>
<td>Blood pressure (High)</td>
<td>31.12 ± 2.98</td>
<td>32.96 ± 5.63</td>
</tr>
<tr>
<td>Blood pressure (LOW)</td>
<td>8.57 ± 0.94</td>
<td>8.90 ± 0.80</td>
</tr>
<tr>
<td>Uric acid</td>
<td>5.02 ± 0.93</td>
<td>5.81 ± 0.89</td>
</tr>
<tr>
<td>Urea</td>
<td>27.30 ± 4.49</td>
<td>31.60 ± 5.22</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SD. * Significance: P-Value ≤ 0.05, ** High significance: P-Value ≤ 0.01

Figure 1. Correlation coefficient between ET-1 and Uric acid

Table 3. Correlation coefficient (r) serum Endothelin (ET-1) and other parameters.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Group of T2-DM (n=96)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (Kg/m²)</td>
<td>R 0.166</td>
<td>0.213 NS</td>
</tr>
<tr>
<td>Uric acid (mmol.L⁻¹)</td>
<td>R 0.238</td>
<td>0.027 S</td>
</tr>
<tr>
<td>Urea (mmol.L⁻¹)</td>
<td>R 0.358</td>
<td>0.006 HS</td>
</tr>
<tr>
<td>MDA (µmol.L⁻¹)</td>
<td>R -0.006</td>
<td>0.962 NS</td>
</tr>
<tr>
<td>Systolic pressure (SBP)</td>
<td>R 0.99</td>
<td>0.035 S</td>
</tr>
<tr>
<td>Diastolic pressure (DBP)</td>
<td>R -0.265</td>
<td>0.045 S</td>
</tr>
</tbody>
</table>
An increased peripheral vascular resistance to blood flow associated with endothelial dysfunction and vascular remodeling characterizes essential hypertension. This increase is in a good agreement with Haak et al., who found that ET-1 levels was elevated in patients with primary hypertension were found [13]. The development of vascular complications in diabetes has been shown to significantly increase hypertension, because both high blood pressure and diabetes are working to change the endothelial cell structure and function of ET-1, and this leads to increased blood pressure and arteriosclerosis in patients with diabetes [14,15]. So, it has been suggested Uric acid is a significant cardiovascular factor particularly in patients with T2-DM so there must be a connection between Endothelin and rate of uric acid. The results show a highly increase uric acid proportion in patients with T2-DM detected in comparison with control groups. Large increase in serum uric acid are attribute linked with cardiovascular disease, is a prognostic predictor in patients with congestive heart failure. Study found that serum uric acid increased in patients with chronic Kidney disease and was associated with cardiovascular disease. The results showed a moderate positive with both of ET-1 and uric acid serum (p< 0.05). Which is consistent with study supports that ET-1 gene expression stimulated by uric acid, partially by the activation of extracellular-signal-regulated kinase extracellular-signal-regulated kinase (ERK) pathway by through Reactive oxygen species Reactive Oxygen species (ROS) generation in cardiac fibroblasts, In heart fibroblasts exposed to uric acid, ET-1 peptide secretion also generally increases [16]. Alessandro et al. [17], also agreement with these results after modification of age, duration of disease in T2-DM, chronic kidney disease (p=0.009). Additionally, we found that serum urea level was a very important strong correlation with the ET-1 (P < 0.0001), indicating that uric acid has a link to endothelial cell cardiac failure and involves endothelial cell damage in the way earlier kidney disease.

CONCLUSIONS

High levels of uric acid in elderly people who have chronic blood pressure are one of the factors influencing the increase release of ET-1, thus the development of cardiovascular disease.

REFERENCES

