The Antimicrobial Activity of Some Medical Plants Extracts Used Against Some Types of Bacteria that Causes Urinary Tract Infection

Nehia Hussein, Noor A. Hanon
Biotechnology Department, College of Applied Science, University of Technology, IRAQ

*Correspondent Author Email: nehiahussein@yahoo.com

Abstract

This study was done to evaluated the antibacterial activity of hot ethanolic and aqueous extracts of Syzygium aromatic (S.aromatic) and Quercus infectoria infectoria (gall) against pathogenic bacteria that causing urinary tract infection (UTI). Such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Qualitative detection of active compounds was done with chemical reagents. The result showed that the extracts of Q.infectoria infectoria was composed of the saponin, tannins, flavonoids, terpenes, Resins, coumarin, glycosides, alkaloids and volatile oils. Also the Qualitative detection of the active groups was further verified with Fourier Transform Infrared Spectroscopy (FTIR). The sensitivity of bacteria was examined against 12 different antibiotics. The results show that E.coli was the most resistant bacteria, resisting 8 antibiotics; P.aeruginosa resisted 5 antibiotics; while S.aureus resistance to 4 only. The antibacterial activity of the plant extracts was investigated for each extracts against bacteria mention above, the plant extracts showed different effects on the growth of all bacterial strains. The Minimum Inhibitory Concentration (MIC) and the Minimum bactericidal concentration (MBC) of the extracts were determined. The kill- time was determined for each extract. The antioxidant activity of the plants in the study was investigated. Compiled results show that all plant extracts have antioxidant effect but that varied depending on the type of the plant and extract. The toxicity of the plant extracts was examined on human red blood cells. It was concluded that the plants do not exhibit any toxicity except for the extracts of Q.infectoria which caused the agglomeration and precipitation of the red blood cell.

Keywords: Medicinal plant, Antimicrobial, Antioxidant, kill time, cytotoxic activity.

الخلاصة

أجريت هذه الدراسة لتقييم التأثير المثبط للمستخلص الأثاثول الساخن والماذب الساخن للنباتات Syzygium aromatic وQuercus infectoria infectoria (gall) ضد البكتيريا المسببة للأمراض التي تسبب التهاب المسالك البولية (UTI). تم الكشف عن المركبات Pseudomonas aeruginosa وEscherichia coli مثبط لشحوب الفاكهة في النباتات باستخدام الفحوصات الكيميائية وقائمة أظهرت النتائج ووجود كل من الساكن، التانين، الفلافونويدات، الطرفيان، الرعشات، السعيدة، الكومارين، السكوديس، الاليكالي وعوامل الدهون. كما تم استخدام جهاز FTIR للكشف عن المجموع الفعال في المستخلصات. تم حساسة البكتيريا ضد 12 مضادات حيوية مختلفة. أظهرت النتائج أن E.coli هي البكتيريا الأكثر مقاومة، حيث أظهرت مقاومة إلى 8 مضادات حيوية من أصل 12 مضادة، أما P.aeruginosa فاظهرت مقاومة إلى 4 فقط. كما فاوضت مقاومة البكتيريا S.aureus مقاومة إلى 5 مضادات. بينما أظهرت مقاومة Q.infectoria مقاومة إلى 4 فقط. تم تحليل السكوديس والدهون المكررة المائدة للمستخلصات الانتانية. أظهرت المستخلصات الانتانية تأثيرات مختلفة على نمو جميع سلالات البكتيريا. تم تحديد مرحلة القتل (MIC) والتركيز المثبط الأدنى (MBC) للمستخلصات. تم تحديد وقت القتل. علاج البكتيريا المثبط الأدنى الدموي للمستخلصات في الدراسة وأظهر النتائج أن جميع المستخلصات الانتانية لها تأثير مضاد للأمراض ولكن ذلك يختلف على نوع النباتات ونوع البكتيريا المستخدم. تم حساس سلالة المستخلصات الانتانية Q.infectoria على علاج الدم المحمر الانتانية. أظهرت النتائج أن النباتات لا تظهر أي سمية باستثناء مستخلصات Q.infectoria التي تسبب في تكتل وترسب كريات الدم الحمراء.
Introduction
Urinary tract infection is very common infections in the community (community acquired) and hospital (nosocomial infection) affects different ages, occur as a result of the multiplication of bacteria in the urinary tract [1]. Women are more vulnerable to infection than men because of anatomical variation of urinary tract infections between women and men [2], this is not a common disease among men but it is dangerous if the man was infected. The cystitis is more frequent in pregnant women because of hormonal changes and of increasing size and weight of the uterus during pregnancy and a high rate of progesterone hormone which squeeze on the urinary tract and reduces urinary flow to the bladder. Cystitis reasons vary between one person and another depending on several reasons including age, health condition, immune status, sex and physiological condition [3]. That most common pathogenic that cause UTI is E.coli bacteria belonging to Enterobacteriaceae family which cause between 80%-85% non-complex cystitis [4] [5], whereas other bacterial species like a bacterium Enterobacter cloacae; Proteus mirabilis; Klebsiella pneumoniae cause about 10% while Staphylococcus saprophyticus bacteria and Staphylococcus aureus cause 10-15% [6]. Because of the long-term use of antibiotics or use it in wrong way the bacteria became more resistant to the antibiotics [7], to find alternative medicine medicinal plants frequently used as raw materials for extraction of active ingredients which used in the synthesis of different drugs, or use to complement or neutralize drug's negative effects (synergic medicine), also medical plants can prevent the appearance of some diseases, this will help to reduce the use of the chemical remedies which will be used when the disease is already present i.e., reduce the side effect of synthetic treatment. Medicinal plants have a promising future because there are about half million plants around the world, and most of them their medical activities have not investigate yet, and their medical activities could be decisive in the treatment of present or future studies [8]. Plants also use as antioxidant which is use treating or getting rid of free radicals which are the first line of defense against free radicals, free radicals are atoms missing electron, causing instability and thus the atom begins to interact with cell components to get stability, and that stability leads to form another free radical and therefore a series of free radicals began [9].

The study aims to detect of the biological effectiveness for the plants extract on the growth of pathogenic bacteria that cause inflammation UTI, Antioxidant activity, cytotoxicity in RBCs, and time-kill for each extract.

Material and Methodology
Collection of bacterial isolates
Bacterial isolates were collected from Educational laboratories in the City of Medicine, Al-Kindi Hospital Laboratories, Al-Alwiya Hospital Laboratories and Al-Alawi Children's Hospital Laboratories) in Baghdad,Iraq. 30 isolates were collected; 10 isolates of each bacteria that used in the study; that diagnosis and isolates with VITEK, and API strips for UTI patients.

Plant collection
Syzygium aromaticum carnivores and Querus infectoria were collected from the local market in Baghdad. During October, the plants were classified by Dr. Zeinab Abd-Aoun Department of biology/ College of Science for Girls / University of Baghdad. The plant parts (leaves, fruit) are grinded with the electric grinder.

Preparation of the plant extract
The alcoholic extract was prepared by Soxhlet extraction method. About 100 g of plant powder was packed into a thimble and run in Soxhlet extractor. It was extracted with 70% ethanol for the period of about 7 hr. or till the solvent in the tube of an extractor become colorless. After that extracts were evaporated from extract in rotary evaporator to get the syrupy consistency. Then extract was kept in refrigerator at 4 °C until use [10].

The aqueous extract was prepared by dissolve 50 g of plant powder in 500 ml distil water and
put it in shaking incubator in 70°C for 30 min. After that extracts were evaporated from extract in rotary evaporator to get the syrupy consistency. Then extract was kept in refrigerator at 4 °C until use [11].

Qualitative detection of antimicrobial activity of plant extract against bacteria:

Plants extracts were tested for antimicrobial activity via agar well diffusion method against different pathogenic microorganisms, *E. coli*, *P. aeruginosa*, (Gram-negative), *S. aureus* (Gram-positive). Pure bacterial cultures were subcultured on mueller hinton agar (MHA). Each strain was uniformly swabbed onto the individual plates by using sterile cotton swabs. Wells with a diameter of 8 mm were made on nutrient agar plates by using the gel puncture method. A micropipette was used to pour 100μL of each extract solution onto each well on all plates. After incubation at 37°C for 24 h, the zone inhibition diameter was measured in millimeters.

PH measurement of plant extracts:

10 g of plant extract (water and alcohol) solve in 90 ml distilled water and left in the blender for 10 minutes, then measured the pH of the extract using PH meter [12].

Specific chemical detection of active compounds of plant extracts:

Based on routine methods and using reagents for this type of testing.

Fourier transforms infrared spectroscopy:

Samples (vegetable powder) were examined by FTIR device. The sample spectroscopy was performed within the range 400-4000 cm⁻¹, and the results were compared with the tables in.

Antibiotic sensitivity test:

The Kirby Bauer disc diffusion method was used to determine the sensitivity of isolates to antibiotics [13]. Mueller Hinton agar was used in this test, bacterial suspension were prepared and compared with the McFarland standard tube (1.5 x 10⁸ cells / ml).

Semi Qualitative detection of antimicrobial activity of plant extracts against bacteria:

Agar well diffusion was used to determine the effectiveness of plant extracts against isolated bacteria after the preparation of the experimental concentrations (40, 60, 80, 100 mg / ml). The bacterial suspension was presented for each isolation and 0.1 mL of it was spread over medium and the middle hole using the perforated hole. Add 100 μl of each hole with the prepared concentrations of the plant extract, as well as the control hole to which 10% DMSO was added for the alcoholic extract and the distilled water of the aquatic extracts. After incubation at 37 ° C for 24 hours, the inhibitory zone was measured around each well in millimeters, and was recorded as mean ± SD of the triplicate experiment [14].

The antibacterial effect of mixing plant extracts:

Binary mixture was prepared by mixing an equal amount of each plant's extract, then the antibacterial effects test done as mentioned above in qualitative detection of antimicrobial activity of plant extract against bacteria.

The antibacterial effect of mixing extracts with antibiotics in the growth of microorganisms:

the mixture of antibiotics and plant's extract was prepared by immersion the antibiotics discs in plant's extracts, let it dry for 10 min, then the discs placed in a cultured Mueller hinton agar, the plates incubate in 37°C for 24 hr.

Measurement of MIC and MBC for plant extracts:

To calculate the minimal inhibitory concentration (MIC) and the minimum bacterial concentration (MBC) of the plant extracts based on what is stated in and as follows: 0.8 ml of the brain heart infusion broth was added to glass test tubes, In addition, 0.1 milliliters of plant extracts were added with the exception of the control tube. The same size of
the normal saline solution was added, and 0.1 mL of the comparative bacterial strain was added with McFarland tube (0.5). After incubation in 37°C in 24 hours, the results were recorded on the basis of turbidity observation. And then took 100 microliters of the mixture and spread on the center of Muller Hanton agar and incubated for 24 hours at a temperature of 37°C. The results were recorded on the basis of growth (+) or lack of growth (-), the experiments were carried out in triplicates.

Time-Kill for plant extracts:
10 ml of nutrient broth was prepared, then 0.1 ml of plant's extracts and 0.1 ml of bacteria were added to the broth, incubated in shaking incubator (150 rpm) at 37°C, estimate bacterial cells concentration at (0, 2, 4, 8, 24) hr [15].

Antioxidant Assay:
The method was adopted in Gentaur, cat. No.ECAT-100, Belgium, with the preparation of a sample of plant extracts with 50 μg / mL concentrations, then transfer 10 μg of sample, 10 μg of positive control and 10 μg of negative control And then add 90 microliters of H₂O₂ with a 50 micromolar concentration to the catalase reactions, incubate for 30 minutes at room temperature and add 100 microliters of reagent. After 30 min of incubation at room temperature, the absorbance was obtained against a blank.

Sample at 490 nm wavelength indicating the color change in the drill effectiveness of the enzyme catalase the degree of color change is strongly related to the effectiveness of the enzyme. All experiments were carried out in triplicates.

Cytotoxicity assay:
The effect of extracts on blood was studied in the blood-agar medium as reported in [16]. The agar-well diffusion method was adopted. Normal saline was used as a control, 0.1 ml of extracted plant and control were added to the plate. After incubation at 37 ° C for 18-24 hours the effect of the extract was determined by measuring the zone of inhibition around each well.

Statistical Analysis:
Analysis of variance (ANOVA) was analyzed in two directions using the SPSS.

Result and discussion

Chemical detection of active compounds in plant extracts:
Table 1 shows the routine detection of the active groups found in the plant extracts. The results were agreed with [17] and [18] where they confirmed that *S.aromatic* is rich in phenolic compounds which cause the biological activity of *S.aromatic*. In *Q.infectpria* the result show that the *Q.infectoria* is the main component of it up to 50-70%, this result were agreed with [10] and [20]. The pH value of aqueous and alcohol extract of *S.aromatic* was 6 and 5.8 respectively. The pH value of aqueous and alcohol extract of the *Q.infectoria* was 7.1 and 6.8 respectively.

<table>
<thead>
<tr>
<th>Active compound</th>
<th>Syzygium aromatic</th>
<th>Q.infectoria infectoria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aqueous</td>
<td>alcoholic</td>
</tr>
<tr>
<td>saponin</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>flavonoid</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Terpenes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>steroids</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>coumarin</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>violet oil</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>tannin</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>resins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>alkaloids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>glycoside</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phenol</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pH</td>
<td>6</td>
<td>5.8</td>
</tr>
</tbody>
</table>

(+)= present in plant, (-) = not present in plant

Fourier transforms infrared spectroscopy (FTIR):
The FTIR is a microbiological test that is used to identify chemical elements. Chemical compounds are identified by how the chemical
bonds between the compounds are absorb the infrared; each compound has its own absorptive composition; the spectral absorption results of the extracts show a band at the rang (3313-3931 cm\(^{-1}\)) for the alcoholic extract and the range (3317-3481 cm\(^{-1}\)) for the aqueous extract which indicates the presence of OH, and the range (1613-1749 cm\(^{-1}\)) for the alcoholic and the range (1516-1618 cm\(^{-1}\)) for the aqueous extract indicated the presence of double bonds in the form of alkene (C = C), the beams at (1440cm\(^{-1}\) - 1446cm\(^{-1}\)) for the alcoholic extract and the beam at 1442 cm\(^{-1}\) in aqueous extract indicate the presence of fluoride (C-X) in S.aromatic, the range (1031-1452 cm\(^{-1}\)) indicate the presence of alcohol in alcoholic extracts, and the range (756-1089 cm\(^{-1}\)) indicate the presence of alcohol. the beams at the range (644-833 cm\(^{-1}\)) of the aqueous extract indicate the presence of chloride (C-X), as indicated by the beams (432-578 cm\(^{-1}\)) indicates the present of bromide in the alcoholic extracts of S.aromatic and Q.infectoria, in aqueous extract, the beam at (424-578 cm\(^{-1}\)) indicate the present of bromide in all extracts. Whereas the beam at 1446 cm -1 indicated the present of fluoride in the alcoholic extract of S.aromatic, at the rang (2144-1456 cm\(^{-1}\)) indicated the present of fluoride in aqueous extract of both S.aromatic and Q.infectoria. While the beams at 1716 cm\(^{-1}\) and 1699 cm\(^{-1}\) indicate the presence of double beds (C = O), (C = N), respectively, the beams at 1541 cm -1 indicate the presence of nitrates (N = O), as show in the Figure 1.

Sensitivity of bacterial isolates to antibiotics:

The antibiotic susceptibility examination of bacterial isolates was compared to the standard tables mentioned in. The results showed that E.coli resistance to Erythromycin, Ciprofloxacin, Cefotaxime, Tobramycin, Doxycycline, and Clindamycin are 100%, 97%, 94%, 100%, 89% and 93% respectively, while both chloramphenicol and gentamicin were inhibited 22.33 mm and 18.66 mm respectively, these results were with [21]. S.aureus was less resistant than other bacteria, Carbencillin, Ampicillin and Cefotaxime were 100% resistant and 93% resistant to chloramphenicol.
While the rate sensitivity to Clindamycin was 29.11 mm, the rate sensitivity to Ciprofloxacin was 25 mm, the rate inhibition zone of Erythromycin and Azithromycin was 20 mm, and these results are in line with previous research done by [22]. *P.aeruginosa* showed high resistance to both Carbencillin, Ampicillin, Clindamycin 100%, Erythromycin 92% and Amikacin 85%, and show highest sensitivity to Ciprofloxacin (45.66 mm) followed by Gentamicin and Azithromycin (both cause 25.55 mm inhibition zone), Tobramycin and Doxycycline both cause 20 mm inhibition zone. This results are in line with previous research done by [23] except Amikacin which cause 19mm inhibition zone on *P.aeruginosa*. The results showed that *E. coli* was the most resistant to antibiotics. It was resistant to 8 of the 12 Antibiotic, followed by *P.aeruginosa*, which was resistant to 5 of the 12 antagonists, while *S.aureus* was resistant to 4 Antibiotics of total 12 antagonists (Figure 2).

The effect of plants extract on bacteria:
The test was done by Agar well Diffusion technique, the stock concentration has been dependent, and the antibacterial effect of plants extract was different according to the type of plant extracts. The results showed that all plants which used in the study have good activity on all strain of bacteria at different concentration; as show in Figure 3; the extracts of *S.aromatic* fruits have High inhibitory effect, the alcohol extract was more effective than aqueous extract on the bacterial isolates. The result of antibacterial susceptibility testing showed that all the strains of the three pathogens *S.aureus, E.coli* and *P.aeruginosa* were highly susceptible to *S.aromatic* alcoholic extract with average diameter zone of inhibitions of 27.66 mm, 23mm, 19mm respectively, in aqueous extract the average diameter zone of inhibitions was 31mm, 8mm, 14.33 to the *S.aureus, E.coli* and *P.aeruginosa* respectively. These results are also evidenced through the work done by [24]. The antibacterial effect in *S.aromatic* extracts is due to the presence of alkaloids and *Q.infectoria* which has an antiseptic effect such as vanilin and Eugenol [25].

![Figure 2: Sensitivity of bacterial isolates to antibiotics](image)
The results of *Q. infectoria* extracts showed that the extract of alcohol has a higher inhibitory effect than the aqueous extract on *E. coli* and *S. aureus*, and equal in inhibitory on *P. aeruginosa*. Statistical analysis showed significant differences in inhibiting bacterial isolates at P < 0.01 at the highest concentration (100 mg / ml), the results showed that the alcohol extract gave the highest effect in the growth of *P. aeruginosa* bacteria with an inhibition diameter of 35 mm, followed by *S. aureus* bacteria with an inhibition rate of 29.66 mm, *E. coli* with an inhibition diameter of 24.66 mm. The results of the treatment with the aqueous extract at the highest concentration showed a significant effect on the inhibition of all isolates at the probability level p < 0.01, where the highest inhibition of *P. aeruginosa* was 35mm inhibition diameter followed by *S. aureus* with an inhibition rate of 28.33 mm. And finally in the growth of *E. coli* bacteria at the rate of inhibition region was 11.66 mm. These results are also evidenced through the work done by [26] and [27] (Figure 4).

The results indicate that there is a variation in the inhibitory effectiveness of plant extracts towards bacterial isolates. This may be due to variation in extraction method, solvent type and nature of the microbiological membranes [28]. It is worth mentioning that the hot alcohol extract was more effective in compared with aqueous extract, which may be due to the fact that the solubility of active substances in the solvent of alcohol is more than aqueous solvent [29]. When comparing the plant extracts, it was observed that the extract of the alcohol of the

Figure 3: shows the inhibitory effect of alcoholic extract (A1, B1, C1) and aqueous extract (A2, B2, C2) of *S. aromatic* in the growth of pathogenic bacteria (A = *E. coli*, B = *P. aeruginosa*, C = *S. aureus*)

Figure 4: shows the inhibitory effect of alcoholic extract (A1, B1, C1) and aqueous extract (A2, B2, C2) of *Q. infectoria* in the growth of pathogenic bacteria (A = *E. coli*, B = *P. aeruginosa*, C = *S. aureus*)
Q. infectoria gave the highest inhibitory effect against the bacterial isolates under study. The inhibitory effect of the Q. infectoria can be explained by the fact that it contains some active compounds such as alkaloids, turpens, tannins, flavons, resins, Table 1. The saponin work to reduce sugar within the bacteria, where they have a correlation with monocrystalline sugars, leading to cell death [30]. Alkaloids have the ability to penetrate the bacterial cell and interfere with DNA, while the work of tannins inhibit the enzymes and transport proteins found in the cell membrane [31]. Flavonoids also have toxic properties to bacteria, fungi and viruses by forming complexes with proteins [32]. Phenols are compounds that have the ability to form complexes that damage the bacterial cell wall and thus inhibit one or more of the metabolic reactions controlled by those enzymes that may be necessary for the growth and proliferation of bacterial cells or responsible for building different proteins [33]. The difference in effect on bacteria by plant extracts is due to the difference in the chemical composition of the bacterial cell, The Gram positive bacteria contains 90% of peptidoglycan, allowing hydrophobic compounds to easily enter the cell. Gram is more complex, containing less peptidoglycan and an outer wall that surrounds the cell wall and binds to it, thereby increasing the resistance of gram-negative bacteria and determining the permeability of the material into the bacteria [34].

The antibacterial effect of mixing plant extracts:
The results show that the alcoholic mixture are more effective than single extract on E.coli and p.aeruginosa, but the effect on S.aureus show that the single effect of both plant's extracts are more effective than binary mixing extracts, as shown in Figure 5. The aqueous mixture of plant's extracts show less antibacterial effect on S.aureus and p.aeruginosa, but on E.coli the binary effects was higher, as show in Figure 6. Those increase in effect because the active compounds present in each extract may increase the action of flavons or Benzene or volatile oils due to the increased concentration of compounds. On other hand the decrease in the effect of these mixtures is due to the chemical reaction of the active compounds in each extract which lead to decrease the effective of compounds. Such a case is known in pharmacology when the combination of compounds with each other increases the effectiveness of some while others decrease their effectiveness after mixing.

![Figure 5: The effect of the mixing of alcoholic plant extracts (mm) and its effect on microorganisms used in the study.](image1)

![Figure 6: The effect of the mixing of aqueous plant extracts (mm) and its effect on microorganisms used in the study.](image2)

The antibacterial effect of mixing extracts with antibiotics in the growth of microorganisms:
Through the process of mixing plant extracts and antibiotics together, no synergistic action was observed, in fact in some cases there where an antagonism effect or no effect on the growth of the microorganisms use in the study, this is clearly shown in following antibiotics CTX, TOB, DO, PY, AM, E, DA.
Determination of the minimum inhibitory concentration and minimum bactericidal concentration of plant extracts:

Minimum inhibitory concentration (MIC) is the lowest concentration inhibits bacteria growth as much as possible. The results showed that the alcohol extract of *S.aromatic* had the strongest effect on the isolates used in the study in compared with quercus. The concentration of 20 mg / mL was the lowest inhibitory concentration of all bacteria used in the study.

The alcoholic extracts of *Q.infectoria* showed a strong effect against *E.coli* and *P.aeruginosa* at a concentration of 20 mg / mL, while the effect was weak against *S.aureus* at 60 mg / mL. In aqueous extracts of *S.aromatic* was weaker than the alcohol extract in affecting *E.coli* at a concentration of 60 mg / mL while the aqueous extract of *S.aromatic* was equal in effect to the rest of the species at a concentration of 20 mg / mL for both extracts.

The water extract of the *Q.infectoria* was weaker than the alcohol extract in the *E.coli* effect at 60 mg/ml, while the strongest effect on *S.aureus* bacteria was at 20 mg/ml, while the effect of aqueous extract was equal to alcohol extract of *Q.infectoria* on both inhibit *P.aeruginosa* growth at 20 mg/mL. Minimal bactericidal concentration (MBC) was also determined, depending on the growth or non-growth of bacteria on the agar. The results showed that the MBC was higher than the MIC of plant extracts. The MBC of the *S.aromatic* extract was the strongest effect compared with *Q.infectoria* at concentration of 40 mg / mL for all bacterial species, whereas the alcohol extract of the *Q.infectoria* showed a variation depending on the type of bacteria. The MBC was (40 mg / ml) *E.coli* and *P.aeruginosa*, in *S.aureus* the MBC was (80 mg/mL). In the aqueous extract, the MBC of *S.aromatic* was the weakest in *E.coli* which was (80 mg / mL). The MBC of both the alcoholic and aqueous extract of *S.aromatic* was equal in effect on both *S.aureus* and *P.aeruginosa* at the concentration (40 mg / mL) for both extracts; the MBC of the *Q.infectoria* was the lowest concentration against *E. coli* (80 mg / mL) and *S.aureus* and *P.aeruginosa* (40 mg / ml). The anti-extract activity is increased by increasing concentration and the value of MIC and MBC varies depending on the type of extract and bacteria, this test gave the plant compounds the opportunity of movement and action within the medium to influence as many bacteria as possible. The value of the MIC is influenced by the nature of the cell wall, the production of bacteria for certain enzymes and the concentration of bacterial suspension [35].

Time-Kill for plant extracts:

The time of killing for plant extracts was studied to estimate the bactericidal effect of the extract on the studied bacteria. The results showed that aqueous and alcoholic *S.aromatic* extracts showed an equal effect against all bacterial isolates used in the study. The time-kill for *P.aeruginosa*, *S.aureus* and *E.coli* was two hours. For the *Q.infectoria*, the aqueous extract was significantly more effective than the alcoholic extract, which was two hours for the aqueous extract of *P.aeruginosa*, *S.aureus*, *E.coli*, and 4 hours for the alcoholic extract for *P.aeruginosa*, *S.aureus*, *E.coli*; Figure (7 and 8); time-kill of an extract depended on the type of bacteria (growth rate under conditions of exponential growth of bacteria) and the concentration and set of action of ingredients in the extract [36]. It can be said that this is the first study in Iraq. This test is based on the determination of the bactericidal effect of the plant extracts under study, so we could not obtain similar local sources so that the results could be discussed more appropriately.

Evaluation of antioxidant efficacy of plant extracts:

The results showed that *S.aromatic* extract contains a quantity of catalase enzyme. The *S.aromatic* extract contains 210U / L while the aqueous extract contains 165U / L, and these results are in line with [37]. *S.aromatic* extracts can be considered a good source of antioxidants, the antioxidant effect of *S.aromatic* are due to eugenol and eugenyl acetate compounds that are high in *S.aromatic*...
The results showed that the Q. infectoria contain more amount of catalase compared with S. aromatic, and the extracts of Q. infectoria contain different proportions of the catalase enzyme according to the type of solvent, the alcoholic extract contains a high percentage of catalase compared to the aqueous extract, alcoholic extract contain 410 U/L while the aqueous extract contains 95 U/L, as shown in Table 2.

These results are also evidenced through the work done by [39] where their study showed that the S. aromatic have no toxicity if the concentration was less than 1500 mg/ml. While the results of the extraction of alcohol and aqueous of the Q. infectoria show accumulation of red blood cells RBCs directly.
after the addition of the extract and the presence of a zone of analysis in the blood agar and this is in counteract with [40] where they found that the extract of alcohol of *Q. infectoria* did not affect the red blood cells RBCs for livestock Sheep. Based on the results of the aqueous and alcohol extracts of *Q. infectoria* balls, this is considered the first study to prove the toxicity of this plant on the red blood cells of humans in Iraq. As shown in Figure (9).

Table 2: Shows the concentration of the catalase enzyme in the plant extracts and the optical density of each extract.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Catalase (U/L)</th>
<th>O.D. (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. infectoria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(aqueous)</td>
<td>95</td>
<td>0.230</td>
</tr>
<tr>
<td>(alcoholic)</td>
<td>410</td>
<td>1.115</td>
</tr>
<tr>
<td>S. aromatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(aqueous)</td>
<td>165</td>
<td>0.394</td>
</tr>
<tr>
<td>(alcoholic)</td>
<td>210</td>
<td>0.530</td>
</tr>
</tbody>
</table>

*O.D. = Optical Density
* Each unit of Catalase break down 1 Micro Mall of H₂O₂ in one minute at pH = 7 at room temperature.

Conclusions

The finding provides an insight into the usage of balles od *Q. infectoria* and *S. aromatic* in the treatment of bacterial infections caused by *E. coli*, *S. aureus* and *P. aeruginasa*. Based on the results of *Q. infectoria* balles extracts effects on RBCs, the treatment by *Q. infectoria* should be in vitro.

References

[27] E. Ayub, S. Nabi, M. Karim and M. Issa, Study on antibacterial and antioxidant

